Detection of single base differences using biotinylated nucleotides with very long linker arms. (57/303)

A simple primer extension method for detecting nucleotide differences is based on the substitution of mobility-shifting analogs for natural nucleotides (1). This technique can detect any single-base difference that might occur including previously unknown mutations or polymorphisms. Two technical limitations of the original procedure have now been addressed. First, switching to Thermococcus litoralis DNA polymerase has eliminated variability believed to be due to the addition of an extra, non-templated base to the 3' end of DNA by Taq DNA polymerase. Second, with the analogs used in the original study, the mobility shift induced by a single base change can usually be resolved only in DNA segments 200 nt or smaller. This size limitation has been overcome by synthesizing biotinylated nucleotides with extraordinarily long linker arms (36 atom backbone). Using these new analogs and conventional sequencing gels (0.4 mm thick), mutations in the human beta-hexosaminidase alpha and CYP2D6 genes have been detected in DNA segments up to 300 nt in length. By using very thin (0.15 mm) gels, single-base polymorphisms in the human APOE gene have been detected in 500-nt segments.  (+info)

Rapid nonradioactive tracer method for detecting carriers of the major Ashkenazi Jewish Tay-Sachs disease mutations. (58/303)

Tay-Sachs disease (TSD, GM2 gangliosidosis, Type I) is an autosomal recessive lysosomal storage disease caused by deficiency of beta-hexosaminidase A (Hex A) resulting from mutations in the gene (HEXA) encoding the alpha-subunit of the enzyme. Three mutations, in exons 7 and 11 and at the exon 12-intron 12 junction, account for > 90% of alleles identified in obligate Ashkenazi Jewish carriers. Mutation analysis requires amplification of available DNA by separate polymerase chain reactions (PCRs) and either restriction digestion and gel electrophoresis or 32P-labeled allele-specific oligonucleotide (ASO) probes. We developed a simple, nonradioisotopic method for rapidly identifying TSD carriers by a triplex PCR reaction followed by dot-blot analysis, using three wild-type and three mutant ASOs end-labeled with digoxigenin-dUTP (dig-ASO). Hybridization was demonstrated immunologically by reaction with an anti-digoxigenin-alkaline phosphatase conjugate followed by colorimetric demonstration of phosphatase activity. The results of analyses by the dig-ASO method of 65 carriers identified by serum enzyme activity and of 6 high-risk fetuses in prenatal testing were the same as those obtained by more conventional restriction analysis. Dig-ASO testing correctly reclassified 10 individuals who had tested inconclusively on analysis for leukocyte beta-hexosaminidase A activity; 3 were identified as carriers and 7 as noncarriers. The simplicity of the assay and the avoidance of the radioisotopes make this a potentially useful method for TSD carrier detection by mutation analysis in Ashkenazi Jews from populations in whom the identity and frequencies of the common TSD mutations are known.  (+info)

Biosynthesis of 5-(4'5'-dihydroxypentyl) uracil as a nucleoside triphosphate in bacteriophage SP15-infected Bacillus subtilis. (59/303)

The nucleoside triphosphate of 5-(4',5'-dihydroxypentyl)uracil (DHPU) was detected in the acid-soluble extract from bacteriophage SP15-infected Bacillus subtilis W23. No uracil was found in the DNA of either replicating or mature phage. Labeled thymidine added during phage DNA synthesis was incorporated into phage DNA. The presence of DHPU as a nucleoside triphosphate in the acid-soluble pool and the incorporation of thymidine into phage DNA suggest that both DHPU and thymine are incorporated into SP15 DNA via their nucleoside triphosphates. 5-Fluorodeoxyuridine inhibited biosynthesis of SP15 DNA, and this inhibition was reversed by thymidine, resulting in the synthesis of a DNA containing reduced amounts of fully modified DHPU. It is proposed that 5-fluorodeoxyuridine, or its metabolic product, inhibits a step in the biosynthetic pathway to the nucleoside triphosphate of DHPU.  (+info)

The crystal structure of Trypanosoma cruzi dUTPase reveals a novel dUTP/dUDP binding fold. (60/303)

dUTPase is an essential enzyme involved with nucleotide metabolism and replication. We report here the X-ray structure of Trypanosoma cruzi dUTPase in its native conformation and as a complex with dUDP. These reveal a novel protein fold that displays no structural similarities to previously described dUTPases. The molecular unit is a dimer with two active sites. Nucleotide binding promotes extensive structural rearrangements, secondary structure remodeling, and rigid body displacements of 20 A or more, which effectively bury the substrate within the enzyme core for the purpose of hydrolysis. The molecular complex is a trapped enzyme-substrate arrangement which clearly demonstrates structure-induced specificity and catalytic potential. This enzyme is a novel dUTPase and therefore a potential drug target in the treatment of Chagas' disease.  (+info)

Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. (61/303)

We report here the design, synthesis and evaluation of a novel photocleavable (PC) biotinylated nucleotide analog, dUTP-PC-Biotin, for DNA polymerase extension reaction to isolate DNA products for mass spectrometry (MS) analysis. This nucleotide analog has a biotin moiety attached to the 5-position of 2'-deoxyribouridine 5'-triphosphate via a photocleavable 2-nitrobenzyl linker. We have demonstrated that dUTP-PC-Biotin can be faithfully incorporated by the DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA polymerase extension reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. Therefore, the DNA extension fragments generated by using the dUTP-PC-Biotin can be efficiently isolated by a streptavidin-coated surface and recovered by near-UV light irradiation at room temperature in mild condition for further analysis without using any chemicals or heat. Single and multiple primer extension reactions were performed using the dUTP-PC-Biotin to generate DNA products for MALDI-TOF MS analysis. Such nucleotide analogs that carry a biotin and a photocleavable linker will allow the isolation and purification of DNA products under mild conditions for MS-based genetic analysis by DNA sequencing or multiplex single nucleotide polymorphism (SNP) detection. Furthermore, these nucleotide analogs should also be useful in isolating DNA-protein complexes under non-denaturing conditions.  (+info)

Escherichia coli mutants deficient in deoxyuridine triphosphatase. (62/303)

Mutants deficient in deoxyuridine triphosphatase (dUTPase) were identified by enzyme assays of randomly chosen heavily mutagenized clones. Five mutants of independent origin were obtained. One mutant produced a thermolabile enzyme, and it was presumed to have a mutation in the structural gene for dUTPase, designated dut. The most deficient mutant had the following associated phenotypes: less than 1% of parental dUTPase activity, prolonged generation time, increased sensitivity to 5'-fluorodeoxyuridine, increased rate of spontaneous mutation, increased rate of recombination (hyper-Rec), an inhibition of growth in the presence of 2 mM uracil, and a decreased ability to support the growth of phage P1 (but not T4 or lambda). This mutation also appeared to be incompatible with pyrE mutations. A revertant selected by its faster growth had regained dUTPase activity and lost its hyper-Rec phenotype. Many of the properties of the dut mutants are compatible with their presumed increased incorporation of uracil into DNA and the subsequent transient breakage of the DNA by excision repair.  (+info)

Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. (63/303)

DNA sequencing by synthesis on a solid surface offers new paradigms to overcome limitations of electrophoresis-based sequencing methods. Here we report DNA sequencing by synthesis using photocleavable (PC) fluorescent nucleotides [dUTP-PC-4,4-difluoro-4-bora-3 alpha,4 alpha-diaza-s-indacene (Bodipy)-FL-510, dCTP-PC-Bodipy-650, and dUTP-PC-6-carboxy-X-rhodamine (ROX)] on a glass chip constructed by 1,3-dipolar azide-alkyne cycloaddition coupling chemistry. Each nucleotide analogue consists of a different fluorophore attached to the base through a PC 2-nitrobenzyl linker. We constructed a DNA microarray by using the 1,3-dipolar cycloaddition chemistry to site-specifically attach azido-modified DNA onto an alkyne-functionalized glass chip at room temperature under aqueous conditions. After verifying that the polymerase reaction could be carried out successfully on the above-described DNA array, we then performed a sequencing reaction on the chip by using a self-primed DNA template. In the first step, we extended the primer using DNA polymerase and dUTP-PC-Bodipy-FL-510, detected the fluorescent signal from the fluorophore Bodipy-FL-510, and then cleaved the fluorophore using 340 nm UV irradiation. This process was followed by extension of the primer with dCTP-PC-Bodipy-650 and the subsequent detection of the fluorescent signal from Bodipy-650 and its photocleavage. The same procedure was also performed by using dUTP-PC-ROX. The entire process was repeated five times by using the three fluorescent nucleotides to identify 7 bases in the DNA template. These results demonstrate that the PC nucleotide analogues can be incorporated accurately into a growing DNA strand during polymerase reaction on a chip, and the fluorophore can be detected and then efficiently cleaved using near-UV irradiation, thereby allowing the continuous identification of the template sequence.  (+info)

A new approach to SNP genotyping with fluorescently labeled mononucleotides. (64/303)

Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3' end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  (+info)