(1/306) Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination.

Template-independent nucleotide additions (N regions) generated at sites of V(D)J recombination by terminal deoxynucleotidyl transferase (TdT) increase the diversity of antigen receptors. Two inborn errors of purine metabolism, deficiencies of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP), result in defective lymphoid development and aberrant pools of 2'-deoxynucleotides that are substrates for TdT in lymphoid precursors. We have asked whether selective increases in dATP or dGTP pools result in altered N regions in an extrachromosomal substrate transfected into T-cell or pre-B-cell lines. Exposure of the transfected cells to 2'-deoxyadenosine and an ADA inhibitor increased the dATP pool and resulted in a marked increase in A-T insertions at recombination junctions, with an overall decreased frequency of V(D)J recombination. Sequence analysis of VH-DH-JH junctions from the IgM locus in B-cell lines from ADA-deficient patients demonstrated an increase in A-T insertions equivalent to that found in the transfected cells. In contrast, elevation of dGTP pools, as would occur in PNP deficiency, did not alter the already rich G-C content of N regions. We conclude that the frequency of V(D)J recombination and the composition of N-insertions are influenced by increases in dATP levels, potentially leading to alterations in antigen receptors and aberrant lymphoid development. Alterations in N-region insertions may contribute to the B-cell dysfunction associated with ADA deficiency.  (+info)

(2/306) Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site.

Comparison of the recently solved structure of HIV-1 reverse transcriptase (RT)-DNA-dNTP ternary complex with the previously solved structure of RT-DNA binary complex suggests mechanisms by which the HIV-1 RT becomes resistant to nucleoside-analog inhibitors, drugs currently used in the treatment of AIDS.  (+info)

(3/306) The effects of various GTP analogues on microtubule assembly.

We synthesized 27 GTP analogues with modification or substitution at positions C2, C6, C8 and ribose moiety to investigate their effect on microtubule (Mt) assembly. It was found that C2 and C6 are both functional for the analogues supporting Mt assembly. It was surprising to find that 2-amino- ATP (n2ATP) substantially supports assembly, and that the appearance of the assembled Mts was indistinguishable from those assembled in the standard GTP assembly buffer solution. Furthermore, 2-amino dATP and dGTP are even more potent than GTP in supporting assembly. The substitution of oxo group at C6 with reactive thiol largely reduced the activity of the analogue to support assembly. When free rotation of the glycosidic linkage of GTP was blocked by the introduction of sulfur atom between C8 and C2' of ribose moiety, it resulted in total suppression of assembly. Purine nucleoside triphosphate was found to support assembly better than GTP, and even more efficient was 2-amino purine nucleoside triphosphate. Interestingly, their deoxy-type analogues were totally inhibitory. Although 2-amino 8-hydroxy ATP and other analogues supported assembly much better than did GTP, their diphosphate analogues were totally incapable of supporting assembly. Finally, bulky fluorescent probes were introduced at C3' of ribose moiety (Mant-8-Br-GTP or Mant-GTP) to visualize the fluorescent signal in assembled Mts. Even in this case, the number of most protofilaments was found to be 14, consistent with that found in Mts assembled in GTP standard buffer solution.  (+info)

(4/306) Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase.

Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86-/- animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.  (+info)

(5/306) Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening.

Telomere shortening during human aging has been reported to be accelerated by oxidative stress. We investigated the mechanism of telomere shortening by oxidative stress. H2O2 plus Cu(II) caused predominant DNA damage at the 5' site of 5'-GGG-3' in the telomere sequence. Furthermore, H2O2 plus Cu(II) induced 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in telomere sequences more efficiently than that in non-telomere sequences. NO plus O2- efficiently caused base alteration at the 5' site of 5'-GGG-3' in the telomere sequence. It is concluded that the site-specific DNA damage at the GGG sequence by oxidative stress may play an important role in increasing the rate of telomere shortening with aging.  (+info)

(6/306) Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis.

Systemic lupus erythematosus (SLE) is characterized by an accelerated apoptosis of peripheral lymphocytes and an impairment of the clearance of apoptotic cells. Since changes in DNA methylation and in deoxycytosine and deoxyguanine (GC) content have been shown to enhance the potential of DNA to activate murine and human B lymphocytes, we tested the capacity of lymphocytes undergoing apoptosis (under conditions that mimic the deletion of self-reactive cells after antigen receptor engagement) to generate nucleosomes with a particular base composition. Using two cell culture systems and four apoptosis triggers, we found an increase of deoxymethylcytosine in fragmented chromosomal DNA of apoptotic B and T lymphocytes. However, this increase was not associated with modulation of DNA (cytosine-5) methyltransferase, the enzyme that methylates eukaryotic DNA, which suggests that the changes in DNA methylation patterns are not linked to the process of de novo DNA methylation during cell death. In addition, we could not detect a unique methylation pattern in highly repetitive Alu sequences present in the human genome of SLE subjects, as compared with controls. However, the abnormal DNA methylation of apoptotic nucleosomes was associated with an unusual pattern of nuclease-resistant, GC-rich regions in these DNA fragments. We propose that the combination of an accelerated apoptosis with a defect in the clearance of apoptotic cells results in release of increased amounts of nucleosomes with abnormally methylated, GC-rich DNA and provides an autologous stimulation that could bypass tolerance to self in systemic autoimmune diseases. These findings support the concept that the structure and dynamics of nucleosomes are critical in determining their immunogenicity in SLE.  (+info)

(7/306) Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation.

The Taq DNA polymerase is the most commonly used enzyme in DNA sequencing. However, all versions of Taq polymerase are deficient in two respects: (i) these enzymes incorporate each of the four dideoxynucleoside 5' triphosphates (ddNTPs) at widely different rates during sequencing (ddGTP, for example, is incorporated 10 times faster than the other three ddNTPs), and (ii) these enzymes show uneven band-intensity or peak-height patterns in radio-labeled or dye-labeled DNA sequence profiles, respectively. We have determined the crystal structures of all four ddNTP-trapped closed ternary complexes of the large fragment of the Taq DNA polymerase (Klentaq1). The ddGTP-trapped complex structure differs from the other three ternary complex structures by a large shift in the position of the side chain of residue 660 in the O helix, resulting in additional hydrogen bonds being formed between the guanidinium group of this residue and the base of ddGTP. When Arg-660 is mutated to Asp, Ser, Phe, Tyr, or Leu, the enzyme has a marked and selective reduction in ddGTP incorporation rate. As a result, the G track generated during DNA sequencing by these Taq polymerase variants does not terminate prematurely, and higher molecular-mass G bands are detected. Another property of these Taq polymerase variants is that the sequencing patterns produced by these enzymes are remarkably even in band-intensity and peak-height distribution, thus resulting in a significant improvement in the accuracy of DNA sequencing.  (+info)

(8/306) Effect of oxidative DNA damage in promoter elements on transcription factor binding.

Reactive oxygen species produced by endogenous metabolic activity and exposure to a multitude of exogenous agents impact cells in a variety of ways. The DNA base damage 8-oxodeoxyguanosine (8-oxodG) is a prominent indicator of oxidative stress and has been well-characterized as a premutagenic lesion in mammalian cells and putative initiator of the carcinogenic process. Commensurate with the recent interest in epigenetic pathways of cancer causation we investigated how 8-oxodG alters the interaction between cis elements located on gene promoters and sequence-specific DNA binding proteins associated with these promoters. Consensus binding sequences for the transcription factors AP-1, NF-kappaB and Sp1 were modified site-specifically at guanine residues and electrophoretic mobility shift assays were performed to assess DNA-protein interactions. Our results indicate that whereas a single 8-oxodG was sufficient to inhibit transcription factor binding to AP-1 and Sp1 sequences it had no effect on binding to NF-kappaB, regardless of its position. We conclude from these data that minor alterations in base composition at a crucial position within some, but not all, promoter elements have the ability to disrupt transcription factor binding. The lack of inhibition by damaged NF-kappaB sequences suggests that DNA-protein contact sites may not be as determinative for stable p50 binding to this promoter as other, as yet undefined, structural parameters.  (+info)