GABAB-Receptor-mediated currents in interneurons of the dentate-hilus border. (41/1453)

GABA(B)-receptor-mediated inhibition was investigated in anatomically identified inhibitory interneurons located at the border between the dentate gyrus granule cell layer and hilus. Biocytin staining was used to visualize the morphology of recorded cells. A molecular layer stimulus evoked a pharmacologically isolated slow inhibitory postsynaptic current (IPSC), recorded with whole cell patch-clamp techniques, in 55 of 63 interneurons. Application of the GABA(B) receptor antagonists, CGP 35348 (400 microM) or CGP 55845 (1 microM) to a subset of 25 interneurons suppressed the slow IPSC by an amount ranging from 10 to 100%. In 56% of these cells, the slow IPSC was entirely GABA(B)-receptor-mediated. However, in the remaining interneurons, a component of the slow IPSC was resistant to GABA(B) antagonists. Subtraction of this antagonist resistant current from the slow IPSC isolated the GABA(B) component (IPSC(B)). This IPSC(B) had a similar onset and peak latency to that recorded from granule cells but a significantly shorter duration. The GABA(B) agonist, baclofen (10 microM), produced a CGP 55845-sensitive outward current in 19 of 27 interneurons. In the eight cells that lacked a baclofen current, strong or repetitive ML stimulation also failed to evoke an IPSC(B), indicating that these cells lacked functional GABA(B) receptor-activated potassium currents. In cells that expressed a baclofen current, the amplitude of this current was approximately 50% smaller in interneurons with axons that projected into the granule cell dendritic layer (22.2 +/- 5.3 pA; mean +/- SE) than in interneurons with axons that projected into or near the granule cell body layer (46.1 +/- 10.0 pA). Similarly, the IPSC(B) amplitude was smaller in interneurons projecting to dendritic (9.4 +/- 2.7 pA) than perisomatic regions (34.3 +/- 5.1 pA). These findings suggest that GABA(B) inhibition more strongly regulates interneurons with axons that project into perisomatic than dendritic regions. To determine the functional role of GABA(B) inhibition, we examined the effect of IPSP(B) on action potential firing and synaptic excitation of these interneurons. IPSP(B) and IPSP(A) both suppressed depolarization-induced neuronal firing. However, unlike IPSP(A), suppression of firing by IPSP(B) could be easily overcome with strong depolarization. IPSP(B) markedly suppressed N-methyl-D-aspartate but not AMPA EPSPs, suggesting that GABA(B) inhibition may play a role in regulating slow synaptic excitation of these interneurons. Heterogeneous expression of GABA(B) currents in hilar border interneurons therefore may provide a mechanism for the differential regulation of excitation of these cells and thereby exert an important role in shaping neuronal activity in the dentate gyrus.  (+info)

The ethanol metabolite acetaldehyde inhibits the induction of long-term potentiation in the rat dentate gyrus in vivo. (42/1453)

1. Ethanol has been reported to inhibit the induction of long-term potentiation (LTP) in the hippocampus. However, the correlation between the effects of ethanol in vivo and in vitro remained unclear. In addition, previous works have little considered the possibility that the effect of ethanol is mediated by its metabolites. To solve these problems, we investigated the effects of ethanol and acetaldehyde, the first metabolite in the metabolism of ethanol, on the induction of LTP at medial perforant path-granule cell synapses in the dentate gyrus of anaesthetized rats in vivo. 2. Oral administration of 1 g kg-1 ethanol significantly inhibited the induction of LTP, confirming the effectiveness of ethanol in vivo. 3. A lower dose of ethanol (0.5 g kg-1) failed to inhibit the induction of LTP in intact rats, but significantly inhibited LTP in rats treated with disulfiram, an inhibitor of aldehyde dehydrogenase, demonstrating that LTP is inhibited by acetaldehyde accumulation following ethanol administration. 4. Intravenous injection of acetaldehyde (0.06 g kg-1) significantly inhibited the induction of LTP. 5. The inhibitory effect of acetaldehyde on LTP induction was also observed when it was injected into the cerebroventricules, suggesting that acetaldehyde has a direct effect on the brain. The intracerebroventricular dose of acetaldehyde effective in inhibiting LTP induction (0.1 - 0.15 mg brain-1) was approximately 10 fold lower than that of ethanol (1.0 - 1.5 mg brain-1). 6. It is possible that acetaldehyde is partly responsible for memory impairments induced by ethanol intoxication.  (+info)

Human neuronal gamma-aminobutyric acid(A) receptors: coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. (43/1453)

gamma-Aminobutyric acid(A) receptors (GABARs) are heteromeric proteins composed of multiple subunits. Numerous subunit subtypes are expressed in individual neurons, which assemble in specific preferred GABAR configurations. Little is known, however, about the coordination of subunit expression within individual neurons or the impact this may have on GABAR function. To investigate this, it is necessary to profile quantitatively the expression of multiple subunit mRNAs within individual cells. In this study, single-cell antisense RNA amplification was used to examine the expression of 14 different GABAR subunit mRNAs simultaneously in individual human dentate granule cells (DGCs) harvested during hippocampectomy for intractable epilepsy. alpha4, beta2, and delta-mRNA levels were tightly correlated within individual DGCs, indicating that these subunits are expressed coordinately. Levels of alpha3- and beta2-mRNAs, as well as epsilon- and beta1-mRNAs, also were strongly correlated. No other subunit correlations were identified. Coordinated expression could not be explained by the chromosomal clustering of GABAR genes and was observed in control and epileptic rats as well as in humans, suggesting that it was not species-specific or secondary to epileptogenesis. Benzodiazepine augmentation of GABA-evoked currents also was examined to determine whether levels of subunit mRNA expression correlated with receptor pharmacology. This analysis delineated two distinct cell populations that differed in clonazepam modulation and patterns of alpha-subunit expression. Clonazepam augmentation correlated positively with the relative expression of alpha1- and gamma2-mRNAs and negatively with alpha4- and delta-mRNAs. These data demonstrate that specific GABAR subunit mRNAs exhibit coordinated control of expression in individual DGCs, which has significant impact on inhibitory function.  (+info)

Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. (44/1453)

A characteristic feature of Alzheimer's disease (AD) is the formation of amyloid plaques in the brain. Although this hallmark pathology has been well described, the biological effects of plaques are poorly understood. To study the effect of amyloid plaques on axons and neuronal connectivity, we have examined the axonal projections from the entorhinal cortex in aged amyloid precursor protein (APP) transgenic mice that exhibit cerebral amyloid deposition in plaques and vessels (APP23 mice). Here we report that entorhinal axons form dystrophic boutons around amyloid plaques in the entorhinal termination zone of the hippocampus. More importantly, entorhinal boutons were found associated with amyloid in ectopic locations within the hippocampus, the thalamus, white matter tracts, as well as surrounding vascular amyloid. Many of these ectopic entorhinal boutons were immunopositive for the growth-associated protein GAP-43 and showed light and electron microscopic characteristics of axonal terminals. Our findings suggest that (1) cerebral amyloid deposition has neurotropic effects and is the main cause of aberrant sprouting in AD brain; (2) the magnitude and significance of sprouting in AD have been underestimated; and (3) cerebral amyloid leads to the disruption of neuronal connectivity which, in turn, may significantly contribute to AD dementia.  (+info)

Neuronal excitation-driven and AP-1-dependent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus. (45/1453)

Understanding of biological function of AP-1 transcription factor in central nervous system may greatly benefit from identifying its target genes. In this study, we present several lines of evidence implying AP-1 in regulating expression of tissue inhibitor of metalloproteinases-1 (timp-1) gene in rodent hippocampus in response to increased neuronal excitation. Such a notion is supported by the findings that timp-1 mRNA accumulation occurs in the rat hippocampus after either kainate- or pentylenetetrazole-evoked seizures with a delayed, in comparison with AP-1 components, time course, as well as with spatial overlap with c-Fos protein (major inducible AP-1 component) expression. Furthermore, AP-1 sequence derived from timp-1 promoter is specifically bound by hippocampal AP-1 proteins after treating the rats with either pro-convulsive agent. Finally, timp-1 promoter responds to excitatory activation both in vivo, in transgenic mice harboring the timp-LacZ gene construct, and in vitro in neurons of the hippocampal dentate gyrus cultures. These findings suggest that the AP-1 transcription factor may exert its role in the brain through affecting extracellular matrix remodeling.  (+info)

Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. (46/1453)

Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.  (+info)

Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. (47/1453)

Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long-term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal slices in vitro, whereas weak forms of plasticity generated by either a single weak tetanization or depotentiation of a robust LTP were impaired. These distinct physiological deficits were paralleled by a reduced flexibility in re-learning a new target in the water-maze. In contrast, learning performance in the acquisition phase and during probe trial did not differ between the mutants and their wild-type littermates. In the open-field, RyR3(-/-) mice displayed a normal exploration and habituation, but had an increased speed of locomotion and a mild tendency to circular running. The observed physiological and behavioral effects implicate RyR3-mediated Ca(2+) release in the intracellular processes underlying spatial learning and hippocampal synaptic plasticity.  (+info)

Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression-like depolarization. (48/1453)

In interfaced rat hippocampal slices spreading depression (SD) and hypoxia-induced SD-like depolarization are associated with increased light reflectance and decreased light transmittance, indicating increased light scattering. By contrast, mild hypotonicity or electrical stimulation decrease light scattering, which is usually taken to be caused by cell swelling. This difference has been attributed to experimental conditions, but in our laboratory moderate osmotic challenge and SD produced opposite intrinsic optical signals (IOSs) in the same slice under identical conditions. To decide whether the SD-induced IOS is related to cell swelling, we investigated the effects of Cl(-) transport inhibitors and Cl(-) withdrawal on both light reflectance and transmittance, as well as on changes in interstitial volume and tissue electrical resistance. In normal [Cl(-)](o), early during hypoxia, there was a slight decrease in light reflectance paired with increase in transmittance. At the onset of hypoxic SD, coincident with the onset of cell swelling (restriction of TMA(+) space), the IOS signals suddenly inverted, indicating sharply increased scattering. The SD-related IOSs started in a single spot and spread out over the entire CA1 region without invading CA3. Application of 2 mM furosemide decreased IOS intensity. When [Cl(-)](o) was substituted by methylsulfate or gluconate, the SD-related reflectance increase and transmittance decrease were suppressed and replaced by opposite signals, indicating scattering decrease. Yet Cl(-) withdrawal did not prevent cell swelling measured as shrinkage of TMA(+) space. The SD-related increase of tissue electrical resistance was reduced when bath Cl(-) was replaced by methylsulfate and almost eliminated when replaced by gluconate. The TMA(+) signal is judged to be a more reliable indicator of interstitial space than tissue resistance. Neither application of cyclosporin A nor raising [Mg(2+)](o) depressed the SD-related reflectance increase, suggesting that Cl(-) flux through mitochondrial "megachannels" may not be a major factor in its generation. Fluoroacetate poisoning of glial cells (5 mM) accelerated SD onset and enhanced the SD-induced reflectance increase threefold. This suggests, first, that glial cells normally moderate the SD process and, second, that neurons are the predominant generators of the light-scattering increase. We conclude that light scattering by cerebral tissue can be changed by at least two different physical processes. Cell swelling decreases light scattering, whereas a second process increases scattering. During hypoxic SD the scattering increase masks the swelling-induced scattering decrease, but the latter is revealed when Cl(-) is removed. The scattering increase is Cl(-) dependent, nevertheless it is apparently not related to cell volume changes. Its underlying mechanism is as yet not clear; possible factors are discussed.  (+info)