The adaptive response of MyoD family proteins in overloaded, regenerating and denervated rat muscles. (33/1756)

Using Western blot analysis, we investigated whether the amount of myogenic regulatory factors differs in slow-type and fast-type muscles. In addition, we examined the adaptive response of myogenic regulatory factor protein in the overloaded rat muscles by the ablation of synergists, in the regenerating muscles following bupivacaine injection and in the denervated muscle. The amount of myogenin protein in the slow-type muscle was markedly greater. In contrast, the proteins MyoD and Myf-5 were selectively accumulated in the fast-type muscles. A gradual down-regulation of MyoD and Myf-5 proteins was detected in the denervated fast-type muscles, but not in the myogenin protein content. A rapid down-regulation of myogenic regulatory factor protein was observed both of the mechanically overloaded and in the regenerating muscles. These results indicate that the fast-type-specific gene expression in muscle is modulated by MyoD and Myf-5 proteins and suggest that myogenin protein plays an important role in the reconstruction of damaged neuromuscular connections.  (+info)

Proprioceptive and retinal afference modify postsaccadic ocular drift. (34/1756)

Drift of the eyes after saccades produces motion of images on the retina (retinal slip) that degrades visual acuity. In this study, we examined the contributions of proprioceptive and retinal afference to the suppression of postsaccadic drift induced by a unilateral ocular muscle paresis. Eye movements were recorded in three rhesus monkeys with a unilateral weakness of one vertical extraocular muscle before and after proprioceptive deafferentation of the paretic eye. Postsaccadic drift was examined in four visual states: monocular viewing with the normal eye (4-wk period); binocular viewing (2-wk period); binocular viewing with a disparity-reducing prism (2-wk period); and monocular viewing with the paretic eye (2-wk period). The muscle paresis produced vertical postsaccadic drift in the paretic eye, and this drift was suppressed in the binocular viewing condition even when the animals could not fuse. When the animals viewed binocularly with a disparity-reducing prism, the drift in the paretic eye was suppressed in two monkeys (with superior oblique pareses) but generally was enhanced in one animal (with a tenotomy of the inferior rectus). When drift movements were enhanced, they reduced the retinal disparity that was present at the end of the saccade. In the paretic-eye-viewing condition, postsaccadic drift was suppressed in the paretic eye and was induced in the normal eye. After deafferentation in the normal-eye-viewing state, there was a change in the vertical postsaccadic drift of the paretic eye. This change in drift was idiosyncratic and variably affected the amplitude and velocity of the postsaccadic drift movements of the paretic eye. Deafferentation of the paretic eye did not affect the postsaccadic drift of the normal eye nor did it impair visually mediated adaptation of postsaccadic drift. The results demonstrate several new findings concerning the roles of visual and proprioceptive afference in the control of postsaccadic drift: disconjugate adaptation of postsaccadic drift does not require binocular fusion; slow, postsaccadic drift movements that reduce retinal disparity but concurrently increase retinal slip can be induced in the binocular viewing state; postsaccadic drift is modified by proprioception from the extraocular muscles, but these modifications do not serve to minimize retinal slip or to correct errors in saccade amplitude; and visually mediated adaptation of postsaccadic drift does not require proprioceptive afference from the paretic eye.  (+info)

Differential patterns of spinal sympathetic outflow involving a 10-Hz rhythm. (35/1756)

Time and frequency domain analyses were used to examine the changes in the relationships between the discharges of the inferior cardiac (CN) and vertebral (VN) postganglionic sympathetic nerves produced by electrical activation of the midbrain periaqueductal gray (PAG) in urethan-anesthetized, baroreceptor-denervated cats. CN-VN coherence and phase angle in the 10-Hz band served as measures of the coupling of the central oscillators controlling these nerves. The 10-Hz rhythm in CN and VN discharges was entrained 1:1 to electrical stimuli applied to the PAG at frequencies between 7 and 12 Hz. CN 10-Hz discharges were increased, and VN 10-Hz discharges were decreased when the frequency of PAG stimulation was equal to or above that of the free-running rhythm. In contrast, stimulation of the same PAG sites at lower frequencies increased, albeit disproportionately, the 10-Hz discharges of both nerves. In either case, PAG stimulation significantly increased the phase angle between the two signals (VN 10-Hz activity lagged CN activity); coherence values relating their discharges were little affected. However, the increase in phase angle was significantly more pronounced when the 10-Hz discharges of the two nerves were reciprocally affected. Importantly, partialization of the phase spectrum using the PAG stimuli did not reverse the change in CN-VN phase angle. This observation suggests that the increase in the CN-VN phase angle reflected changes in the phase relations between coupled oscillators in the brain stem rather than the difference in conduction times to the two nerves from the site of PAG stimulation. In contrast to the effects elicited by PAG stimulation, stimulation of the medullary lateral tegmental field induced uniform increases in the 10-Hz discharges of the two nerves and no change in the CN-VN phase angle. Our results demonstrate that changes in the phase relations among coupled brain stem 10-Hz oscillators are accompanied by differential patterns of spinal sympathetic outflow. The reciprocal changes in CN and VN discharges produced by PAG stimulation are consistent with the pattern of spinal sympathetic outflow expected during the defense reaction.  (+info)

Renin activity and blood pressure in response to chronic episodic hypoxia. (36/1756)

Previous studies in several strains of rats have demonstrated that 35 days of recurrent episodic hypoxia (EH) (7 hours per day), with a fractional concentration of inspired oxygen that produces desaturation equivalent to the recurrent hypoxemia of sleep apnea, results in an 8 to 13 mm Hg persistent increase in diurnal systemic blood pressure (BP). Carotid chemoreceptors and the sympathetic nervous system have been shown to be necessary for development of this BP increase. Both renal artery denervation and adrenal demedullation block the BP response to chronic EH. The present study was undertaken to define further the role of the kidneys and the renin-angiotensin system in this BP increase. Separate groups of male Sprague-Dawley rats had either (1) bilateral renal artery denervation with EH, (2) sham surgery with EH, (3) sham surgery with sham EH (compressed air), (4) EH with losartan, (5) unhandled with losartan, or (6) unhandled. The experimental period lasted 35 days. Both renal-artery denervated and losartan-treated animals showed no BP change or a lowering of BP in response to EH, whereas the sham-operated EH animals showed a progressive, sustained increase in resting room air BP. BP remained at basal levels or fell in unhandled and unhandled losartan-treated animals. Plasma renin activity was elevated 4-fold versus basal levels in EH animals with renal nerves intact but remained at baseline levels in denervated animals. At the end of the experiment, renal tissue catecholamines confirmed renal denervation in those animals. In conclusion, EH causes a progressive increase in BP, mediated in part through renal sympathetic nerve activity that acts to increase renin-angiotensin system activity through angiotensin II type 1 receptors.  (+info)

Antiulcer effect of lafutidine on indomethacin-induced gastric antral ulcers in refed rats. (37/1756)

Lafutidine is a new type antiulcer agent with antisecretory and gastroprotective activities. We investigated the effect of lafutidine on indomethacin-induced antral ulcer in refed rats. Subcutaneous indomethacin injection resulted in the formation of gastric antral ulcer. Lafutidine (1-10 mg/kg, p.o.) reduced the area of ulcer in a dose-dependent manner when administered immediately after the indomethacin injection. Capsaicin at 3 mg/kg, p.o. and 16,16-dimethyl prostaglandin E2 at 3 microg/kg, p.o. also reduced the ulcer area. Chemical deafferentation of capsaicin-sensitive neurons or N(G)-nitro-L-arginine treatment aggravated the ulcer formation and abolished the preventive effect of lafutidine and capsaicin. After the induction of gastric ulcer, lafutidine given twice daily for 2.5 days reduced the area of ulcer in a dose-dependent manner with a significant effect at 10 mg/kg, p.o., as compared with that of the control group. In chemically-deafferentated rats, lafutidine did not show any healing effect. Cimetidine (30 mg/kg, p.o.) and famotidine (1 mg/kg, p.o.) had no significant effect on indomethacin-induced antral ulcer. These results may suggest that lafutidine, unlike cimetidine and famotidine, can prevent the indomethacin-induced antral ulcer formation and accelerate the healing of the ulcer in refed rats through mechanisms involving the capsaicin-sensitive afferent neurons and nitric oxide.  (+info)

Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. (38/1756)

One of the earliest events in limb regeneration is the extensive remodeling of the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are a family of matrix degrading enzymes that have been identified in both normal and disease states. Using RT-PCR and cDNA library screening, we have isolated sequences homologous to four different Mmp genes. The spatial and temporal expression of one of these, Mmp-9, has been analyzed during axolotl limb regeneration. Northern blot analysis identifies a 3.8 kb transcript that is abundantly expressed during regeneration, and whole-mount in situ hybridization has uncovered an unusual bi-phasic expression pattern. The first phase begins at 2 hours after amputation, and expression is confined to the healed wound epithelium. This phase continues for 2 days, showing peak expression at 14 hours after amputation. This early phase may be needed to retard reformation of the basal lamina of the epidermis, and thereby facilitate the epidermal-mesenchymal interactions required for successful regeneration. The second phase begins a few days later when a small blastema has formed. During this phase, expression is in the mesenchyme, localized to cells around the tips of the cut skeletal elements. This expression is maintained through several stages until redifferentiation begins. The timing and position of the second phase of expression is consistent with a role for Mmp-9 in the removal of damaged cartilage matrix. We have also discovered that the time of onset of Mmp-9 expression is sensitive to denervation, which causes a delay of several hours. Finally, retinoids, known for their dramatic effects on the pattern of regenerating limbs, can cause a down regulation of Mmp-9 expression. Dev Dyn 1999;216:2-9.  (+info)

Uncharted cholinergic nerves in the rabbit parotid gland. (39/1756)

Cholinergic nerves are shown to be left in the rabbit parotid gland after avulsion of the auriculo-temporal nerve: a cholinesterase inhibitor injected through the duct caused secretion, thereby revealing leakage of acetylcholine from cholinergic nerve endings, and acetylcholinesterase positive nerves were found histochemically. The incomplete cholinergic denervation offers an explanation to the fact that some choline acetyltransferase activity remains in the 'denervated' glands.  (+info)

Effects of reducing submandibular blood flow on secretory responses to parasympathetic stimulation in anaesthetized cats. (40/1756)

Submandibular secretory responses to stimulation of the parasympathetic chorda-lingual nerve were investigated in five anaesthetized cats before, during and after withdrawal of blood (ca 20 ml kg-1) in order to investigate the consequences of a reduced blood flow through the gland. Stimulation at different frequencies (2, 4, 6 and 8 Hz) evoked a frequency-dependent increase in the flow of submandibular saliva, sodium concentration, electrolyte and protein output. When the blood pressure was reduced (by about 50%) there was a significant reduction in submandibular blood flow and the secretion of both saliva and protein during stimulation. Under each set of conditions the flow of saliva was linearly related to the blood flow through the gland. It is concluded that submandibular secretory responses to electrical stimulation of the parasympathetic innervation can be significantly attenuated when the blood flow through the gland is reduced under the conditions employed in this study.  (+info)