Establishment of a seronegative human T-cell leukemia virus type 1 (HTLV-1) carrier state in rats inoculated with a syngeneic HTLV-1-immortalized T-cell line preferentially expressing Tax. (1/23)

Human T-cell leukemia virus type 1 (HTLV-1) causes T-cell malignancies in a small percentage of the population infected with the virus after a long carrier state. In the present study, we established a seronegative HTLV-1 carrier state in rats inoculated with a newly established HTLV-1-infected rat T cell line, FPM1. FPM1 originated from rat thymocytes cocultured with a human HTLV-1 producer, MT-2 cells, and expressed rat CD4, CD5, CD25, and HTLV-1 Tax. However, FPM1 scarcely expressed other major HTLV-1 structural proteins and failed to induce typical antibody responses against HTLV-1 in inoculated rats. In contrast, control rats inoculated with MT-2 cells generated significant levels of anti-HTLV-1 antibodies. HTLV-1 proviruses were detected in peripheral blood cells of syngeneic rats inoculated with FPM1 for more than 1 year. Analysis of the flanking region of HTLV-1 provirus integrated into host cells suggested that FPM1 cells remained in these animals over a relatively long period of time. However, a similar seronegative HTLV-1 carrier state was induced in the rats inoculated with mitomycin C-treated FPM1 cells and also in FPM1-inoculated allogeneic rats, suggesting that FPM1 could also transmit HTLV-1 into host cells in vivo. Our findings indicated that (i) HTLV-1-immortalized T cells which preferentially express HTLV-1 Tax persisted in vivo but failed to induce any diseases in immunocompetent syngeneic rats and that (ii) suboptimal levels of HTLV-1 for antibody responses allowed the establishment of persistent HTLV-1 infection.  (+info)

The HTLV-I orfI protein is recognized by serum antibodies from naturally infected humans and experimentally infected rabbits. (2/23)

The mechanism of T-cell transformation by human T-cell lymphotropic virus type I (HTLV-I), though not completely understood, appears to involve the interactions of several viral and cellular proteins. One of these viral proteins, p12(I), encoded by HTLV-I orfI, is a weak oncogene that binds the 16-kDa subunit of the vacuolar ATPase and interacts with the immature beta and gamma(c) chains of the IL-2 receptor. We have expressed the singly spliced orfI cDNA in the baculovirus system and used the recombinant protein as a tool to assess the presence of antibodies in naturally or experimentally infected hosts. In addition, rabbit antisera were raised against various p12(I) synthetic peptides and used to identify three antigenic regions within p12(I), one between the two putative transmembrane regions of p12(I) and two at the carboxy-terminus of the protein. More importantly, sera from a naturally infected human (1 of 32) and experimentally infected rabbits (9 of 20) recognized the rp12(I), demonstrating orfI expression and immunogenicity in vivo. Taken together these data provide the first evidence of orfI expression during HTLV-I infections.  (+info)

Human T-cell lymphotropic virus type 1 gag indeterminate western blot patterns in Central Africa: relationship to Plasmodium falciparum infection. (3/23)

To gain insight on the significance of human T-cell lymphotropic virus type 1 (HTLV-1) indeterminate serological reactivities, we studied villagers of South Cameroon, focusing on a frequent and specific HTLV-1 Gag indeterminate profile (HGIP) pattern (gag p19, p26, p28, and p30 without p24 or Env gp21 and gp46). Among the 102 sera studied, 29 from all age groups had a stable HGIP pattern over a period of 4 years. There was no epidemiological evidence for sexual or vertical transmission of HGIP. Seventy-five percent of HGIP sera reacted positively on MT2 HTLV-1-infected cells by immunofluorescence assay. However, we could not isolate any HTLV-1 virus or detect the presence of p19 Gag protein in cultures of peripheral blood mononuclear cells obtained from individuals with strong HGIP reactivity. PCR experiments conducted with primers for HTLV-1 and HTLV-2 (HTLV-1/2 primers) encompassing different regions of the virus did not yield HTLV-1/2 proviral sequences from individuals with HGIP. Using 11 peptides corresponding to HTLV-1 or HTLV-2 immunodominant B epitopes in an enzyme-linked immunosorbent assay, one epitope corresponding to the Gag p19 carboxyl terminus was identified in 75% of HGIP sera, while it was recognized by only 41% of confirmed HTLV-1-positive sera. A positive correlation between HTLV-1 optical density values and titers of antibody to Plasmodium falciparum was also demonstrated. Finally, passage of sera through a P. falciparum-infected erythrocyte-coupled column was shown to specifically abrogate HGIP reactivity but not the HTLV-1 pattern, suggesting the existence of cross-reactivity between HTLV-1 Gag proteins and malaria-derived antigens. These data suggest that in Central Africa, this frequent and specific Western blot is not caused by HTLV-1 infection but could instead be associated with P. falciparum infection.  (+info)

The pathogenesis of tropical spastic paraparesis/human T-cell leukemia type I-associated myelopathy. (4/23)

Tropical spastic paraparesis/human T-cell leukemia type I-associated myelopathy (TSP/HAM) is caused by a human T-cell leukemia virus type I (HTLV-I) after a long incubation period. TSP/HAM is characterized by a chronic progressive paraparesis with sphincter disturbances, no/mild sensory loss, the absence of spinal cord compression and seropositivity for HTLV-I antibodies. The pathogenesis of this entity is not completely known and involves a multivariable phenomenon of immune system activation against the presence of HTLV-I antigens, leading to an inflammatory process and demyelination, mainly in the thoracic spinal cord. The current hypothesis about the pathogenesis of TSP/HAM is: 1) presence of HTLV-I antigens in the lumbar spinal cord, noted by an increased DNA HTLV-I load; 2) CTL either with their lytic functions or release/production of soluble factors, such as CC-chemokines, cytokines, and adhesion molecules; 3) the presence of Tax gene expression that activates T-cell proliferation or induces an inflammatory process in the spinal cord; 4) the presence of B cells with neutralizing antibody production, or complement activation by an immune complex phenomenon, and 5) lower IL-2 and IFN-gamma production and increased IL-10, indicating drive to a cytokine type 2 pattern in the TSP/HAM subjects and the existence of a genetic background such as some HLA haplotypes. All of these factors should be implicated in TSP/HAM and further studies are necessary to investigate their role in the development of TSP/HAM.  (+info)

Evidence that the transmembrane domain proximal region of the human T-cell leukemia virus type 1 fusion glycoprotein gp21 has distinct roles in the prefusion and fusion-activated states. (5/23)

To investigate the structural context of the fusion peptide region in human T-cell leukemia virus type 1 gp21, maltose-binding protein (MBP) was used as an N-terminal solubilization partner for the entire gp21 ectodomain (residues 313-445) and C-terminally truncated ectodomain fragments. The bacterial expression of the MBP/gp21 chimeras resulted in soluble trimers containing intramonomer disulfide bonds. Detergents blocked the proteolytic cleavage of fusion peptide residues in the MBP/gp21-(313-425) chimera, indicating that the fusion peptide is available for interaction with detergent despite the presence of an N-terminal MBP domain. Limited proteolysis experiments indicated that the transmembrane domain proximal sequence Thr(425)-Ala(439) protects fusion peptide residues from chymotrypsin. MBP/gp21 chimera stability therefore depends on a functional interaction between N-terminal and transmembrane domain proximal regions in a gp21 helical hairpin structure. In addition, thermal aggregation experiments indicated that the Thr(425)-Ser(436) sequence confers stability to the fusion peptide-containing MBP/gp21 chimeras. The functional role of the transmembrane domain proximal sequence was assessed by alanine-scanning mutagenesis of the full-length envelope glycoprotein, with 11 of 12 single alanine substitutions resulting in 1.5- to 4.5-fold enhancements in cell-cell fusion activity. By contrast, single alanine substitutions in MBP/gp21 did not significantly alter chimera stability, indicating that multiple residues within the transmembrane domain proximal region and the fusion peptide and adjacent glycine-rich segment contribute to stability, thereby mitigating the potential effects of the substitutions. The fusion-enhancing effects of the substitutions are therefore likely to be caused by alteration of the prefusion complex. Our observations suggest that the function of the transmembrane domain proximal sequence in the prefusion envelope glycoprotein is distinct from its role in stabilizing the fusion peptide region in the fusion-activated helical hairpin conformation of gp21.  (+info)

Human T-cell lymphotropic virus type 1 p12(I) expression increases cytoplasmic calcium to enhance the activation of nuclear factor of activated T cells. (6/23)

Human T-cell lymphotropic virus type 1 (HTLV-1) establishes persistent infection and is associated with lymphoproliferative or neurodegenerative diseases. As a complex retrovirus, HTLV-1 contains typical structural and enzymatic genes, as well as regulatory and accessory genes encoded in the pX region. The early events necessary for HTLV-1 to establish infection in lymphocytes, its primary target cells, remain unresolved. Recent studies have demonstrated the importance of regulatory and accessory gene products in determining this virus-host interaction. Among these, pX open reading frame I, which encodes two proteins, p12(I) and p27(I), is required for establishing persistent infection in vivo and for infection in quiescent primary lymphocytes. In addition, p12(I) localizes in the endoplasmic reticulum (ER) and cis-Golgi apparatus and associates with a calcium binding protein, calreticulin. We recently reported that p12(I) expression induces the calcium-responsive T-cell transcription factor, nuclear factor of activated T cells (NFAT), in the presence of phorbol ester activation. Based on these studies, we hypothesize that p12(I) may modulate calcium release from the ER. Here, we report that p12(I) expression increases basal cytoplasmic calcium and concurrently diminishes calcium available for release from the ER stores. Overexpression of calreticulin, a calcium buffer protein, blocked p12(I)-mediated NFAT activation independently of its ability to bind p12(I). Chemical inhibition studies using inhibitors of inositol 1,4,5-triphosphate receptor and calcium release-activated calcium channels suggest that inositol 1,4,5-triphosphate receptor in the ER membrane and calcium release-activated calcium channels in the plasma membrane contribute to p12(I)-mediated NFAT activation. Collectively, our results are the first to demonstrate the role of p12(I) in elevating cytoplasmic calcium, an antecedent to T-cell activation, and further support the important role of this accessory protein in the early events of HTLV-1 infection.  (+info)

Sensitivity and specificity of a recombinant transmembrane glycoprotein (rgp21)-spiked western immunoblot for serological confirmation of human T-cell lymphotropic virus type I and type II infections. (7/23)

Serum specimens (n = 2,712) obtained from individuals residing in diverse geographic regions and categorized as seropositive (n = 122), seroindeterminate (n = 523), or seronegative (n = 2,067) for human T-cell lymphotropic virus (HTLV) infection in accordance with U.S. Public Health Service guidelines were retested by recombinant transmembrane protein (rgp21)-spiked Western immunoblotting. Of the 122 HTLV-positive specimens, those from 85 of 85 (100%) U.S. blood donors, 2 of 2 (100%) Brazilians, 1 of 2 (50%) Indonesians, 14 of 14 (100%) Solomon Islanders, and 18 of 19 (95%) Papua New Guineans reacted with rgp21, yielding an overall sensitivity of 98% (120 of 122). Specimens from individuals whose infections were confirmed to be HTLV type I or HTLV type II by the polymerase chain reaction assay reacted equally well with rgp21. Of the 523 HTLV-indeterminate specimens, those from 21 of 379 (5.5%) U.S. blood donors, 3 of 6 (50%) Brazilians, 10 of 23 (44%) Ugandans, 8 of 49 (16%) Indonesians, 4 of 36 (11%) Solomon Islanders, and 5 of 30 (17%) Papua New Guineans reacted with rgp21. None of these 51 specimens reacted with native gp46 and/or gp61/68 in a radioimmunoprecipitation assay, suggesting a false-positive reaction (9.75%). Of the 2,067 HTLV-negative specimens, 12 reacted with rgp21, yielding a false-positivity rate of 0.6%. These data indicate that while detection of rgp21 is highly sensitive, it can yield false-positive results. Thus, specimens exhibiting reactivity with rgp21 in the absence of reactivity with native gp46 and/or gp61/68 by Western blot should be tested further by a radioimmunoprecipitation assay to verify HTLV type I or type II infection.  (+info)

Human T-cell leukemia virus type I or a related retrovirus in patients with mycosis fungoides/Sezary syndrome and Kaposi's sarcoma. (8/23)

Antibodies reactive with human T-cell leukemia virus type I (HTLV-I) proteins p19, p24, gp46, p56, and gp68 were detected in four of 27 patients with mycosis fungoides/Sezary syndrome (MF/SS) and one patient with Kaposi's sarcoma using radioimmunoprecipitation and Western blot analysis. Seroreactivity patterns to HTLV-I proteins of MF/SS sera were indeterminate or limited in comparison with sera of patients with adult T-cell leukemia/lymphoma. HTLV-I gag- and tax/rex-specific DNA was demonstrated in peripheral blood from three of the MF/SS patients and from the patient with Kaposi's sarcoma by the polymerase chain reaction. HTLV-I-specific DNA sequences were not detected in a cohort of seven seronegative MF/SS patients. The frequency of HTLV-I infection was four of 27 or 14.8% among the MF/SS patients, which is several hundredfold higher than in normal blood donors. The present data suggest a possible association of HTLV-I or a related retrovirus with mycosis fungoides/Sezary syndrome and Kaposi's sarcoma.  (+info)