Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. (33/1328)

Herpes simplex virus type 1 (HSV-1) immediate-early protein Vmw110 stimulates the onset of virus infection in a multiplicity-dependent manner and is required for efficient reactivation from latency. Recent work has shown that Vmw110 is able to interact with or modify the stability of several cellular proteins. In this report we analyze the ability of Vmw110 to inhibit the progression of cells through the cell cycle. We show by fluorescence-activated cell sorter and/or confocal microscopy analysis that an enhanced green fluorescent protein-tagged Vmw110 possesses the abilities both to prevent transfected cells moving from G(1) into S phase and to block infected cells at an unusual stage of mitosis defined as pseudo-prometaphase. The latter property correlates with the Vmw110-induced proteasome-dependent degradation of CENP-C, a centromeric protein component of the inner plate of human kinetochores. We also show that whereas Vmw110 is not the only viral product implicated in the block of infected cells at the G(1)/S border, the mitotic block is a specific property of Vmw110 and more particularly of its RING finger domain. These data explain the toxicity of Vmw110 when expressed alone in transfected cells and provide an explanation for the remaining toxicity of replication-defective mutants of HSV-1 expressing Vmw110. In addition to contributing to our understanding of the effects of Vmw110 on the cell, our results demonstrate that Vmw110 expression is incompatible with the proliferation of a dividing cell population. This factor is of obvious importance to the design of gene therapy vectors based on HSV-1.  (+info)

Production and design of more effective avian replication-incompetent retroviral vectors. (34/1328)

Retroviral vectors have been invaluable tools for studies of development in vertebrates. Their use has been somewhat constrained, however, by the low viral titers typically obtained with replication-incompetent vectors, particularly of the avian type. We have addressed this problem in several ways. We optimized the transient production of avian replication-incompetent viruses in a series of cell lines. One of the optimal cell lines was the mammalian line 293T, which was surprising in light of previous reports that avian viral replication was not supported by mammalian cells. We also greatly increased the efficiency of viral infection. Pseudotyping with the vesicular stomatitus virus G (VSV-G) protein led to an over 350-fold increase in the efficiency of infection in ovo relative to infection with virus particles bearing an avian retroviral envelope protein. To further increase the utility of the system, we developed new Rous sarcoma virus (RSV)-based replication-incompetent vectors, designed to express a histochemical marker gene, human placental alkaline phosphatase, as well as an additional gene. These modified retroviral vectors and the VSV-G pseudotyping technique constitute significant improvements that allow for expanded use of avian replication-incompetent viral vectors in ovo.  (+info)

Nematode transmission of tobacco rattle virus serves as a bottleneck to clear the virus population from defective interfering RNAs. (35/1328)

DI7 is a defective interfering RNA derived from RNA 2 of tobacco rattle tobravirus (TRV) isolate PpK20. Tobacco was transformed with DI7 cDNA fused to the CaMV 35S promoter. Upon infection of the transgenic plants with TRV isolate PpK20 or the serologically unrelated isolate PaY4, the transgenic DI7 RNA started to accumulate at high levels and strongly interfered with accumulation of wild-type (wt) RNA 2. When DI7 transgenic plants infected with isolate PpK20 were used as source plants in nematode-transmission experiments, the vector Paratrichodorus pachydermus efficiently transmitted virus to healthy bait plants. However, the nematodes transmitted only the wt virus present in the transgenic source plants, whereas virus particles containing the abundant, accumulated DI7 RNA were excluded from transmission. Evidence is presented that wt RNA 2 and DI7 RNA are encapsidated in cis by their encoded CPs, which are known to be functional and nonfunctional in transmission, respectively. This mechanism would result in defective interfering RNAs, which rapidly arise after mechanical transmission of the virus in the laboratory, being eliminated from tobraviruses under natural field conditions. Also this mechanism which acts with nematode transmitted virus isolates contrasts with that of vector-transmission of defective potyviruses and luteoviruses by wt helper viruses.  (+info)

Comparisons of defective HTLV-I proviruses predict the mode of origin and coding potential of internally deleted genomes. (36/1328)

Cell lines infected with a variety of HTLV-I isolates were examined for the presence of defective proviruses that contain deletions spanning the gag, pol, and env genes. Internally deleted proviruses were identified by Southern blotting and by PCR amplification with 5' and 3' primers complementary to gag and tax sequences, respectively. PCR products representing eight defective proviruses from seven different cell lines were subsequently cloned and sequenced. The objectives of this study were twofold: first, we sought to determine whether nucleotide sequences surrounding sites of deletion shared common features that might reveal the mechanisms by which the defective genomes originated. Second, we asked whether deleted proviruses encode Gag fusion proteins with related C-terminal residues derived from open reading frames in the pX region. While most of the defective proviruses had incurred a single, large deletion, two of them displayed a more complex pattern of multiple rearrangements. Alignments of bases flanking the 5' and 3' deletion endpoints within each provirus showed tracts of sequence identity consistent with a mechanism involving aberrant intramolecular strand-transfer events during replication. We suggest that the amount or activity of HTLV-I polymerase in virions may contribute both to the poor infectivity of the virus and to the high deletion frequency. Two of the eight proviruses that were examined encoded a gag gene joined to an extended open reading frame; the other six had very short open reading frames (one to six amino acids) derived from pX or env regions joined to gag that showed no apparent amino acid sequence similarity.  (+info)

Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate. (37/1328)

A recombinant replication-defective human adenovirus serotype 5 vector containing FMDV capsid, P1-2A, and viral 3C protease coding regions was constructed. Two viral clones were isolated, Ad5-P12X3CWT, containing the wild-type (WT) 3C protease that processes capsid polyprotein precursor into mature capsid proteins, and Ad5-P12X3CMUT, containing a point mutation in the protease coding region that inhibits processing. In 293 cells infected with either virus, synthesis of the FMDV capsid polyprotein precursor occurred, but processing of the polyprotein into structural proteins VP0, VP3, and VP1 occurred only in 3CWT virus-infected cells. Immunoprecipitation with monospecific and monoclonal antibodies indicates possible higher order structure formation in Ad5-P12X3CWT virus-infected cells. The viruses were used to elicit immune responses in mice inoculated intramuscularly (im). Only virus containing the 3CWT elicited a neutralizing antibody response. After boosting, this neutralizing antibody response increased. Swine inoculated im with Ad5-P12X3CWT virus developed a neutralizing antibody response and were either completely or partially protected from contact challenge with an animal directly inoculated with virulent FMDV. This adenovirus vector may be an efficient system for the delivery of FMDV cDNA into animals, leading to a high level of neutralizing antibody production and protection from FMDV challenge.  (+info)

Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented in trans by 3AB and 3ABC. (38/1328)

The orchestrated liberation of viral proteins by 3C(pro)-mediated proteolysis is pivotal for gene expression by picornaviruses. Proteolytic processing is regulated either by the amino acid sequence at the cleavage site of the substrate or by cofactors covalently or noncovalently linked to the viral proteinase. To determine the role of the amino acid sequence at cleavage sites 3A/3B and 3B/3C that are essential for the liberation of 3C(pro) from its precursors and to assess the function of the stable processing intermediates 3AB and 3ABC, we studied the effect of cleavage site mutations on hepatitis A virus (HAV) polyprotein processing, particle formation, and replication. Using the recombinant vaccinia virus system, we showed that the normally retarded cleavage at the 3A/3B junction can be improved by altering the amino acid sequence at the scissile bond such that it matches the preferred HAV 3C cleavage sites. In contrast to the processing products of the wild-type polyprotein, 3ABC was no longer detectable in the mutant. VP0 and VP3 were generated less efficiently, implying that processing of the structural protein precursor P1-2A depends on the presence of stable 3ABC and/or 3AB. In addition, cleavage of 2BC was impaired in 3AB/3ABC-deficient mutants. Formation of HAV particles was not affected in mutants with blocked 3A/3B and/or 3B/3C cleavage sites. However, 3ABC-deficient mutants produced small numbers of HAV particles, which could be augmented by coexpressing 3AB or 3ABC. The hydrophobic domain of 3A that has been proposed to mediate membrane anchorage of the replication complex was crucial for restoration of defective particle formation. In vitro transcripts of the various cleavage site mutants were unable to initiate an infectious cycle, and no progeny viruses were obtained even after blind passages. Taken together, the data suggest that accumulation of uncleaved HAV 3AB and/or 3ABC is pivotal for both viral replication and efficient particle formation.  (+info)

Porcine adenovirus-3 as a helper-dependent expression vector. (39/1328)

Porcine adenovirus has been proposed as a potential vector for generating novel and effective vaccines for pigs. As a prerequisite for the generation of helper-dependent porcine adenovirus-3 (PAV-3) vectors, two E1-complementing porcine cell lines expressing E1 proteins of human adenovirus-5 (HAV-5) were made. These cell lines could be efficiently transfected with DNA and allowed the rescue and propagation of a PAV-3 recombinant, PAV201, containing a 0.597 kb E3 deletion and a 0.803 kb E1A deletion. Our data demonstrate that E1A proteins of HAV-5 have the capacity to transform foetal porcine retina cells and complement for the E1A proteins of PAV-3. The green fluorescent protein (GFP) gene placed under the control of a cytomegalovirus immediate early promoter was inserted into the E1A region of the PAV201 genome. Using these cell lines, a helper-dependent PAV-3 recombinant expressing GFP, PAV202, was constructed and characterized. The wild-type PAV-3 and the recombinant PAV202 expressing GFP were used to determine the ability of the virus to enter and replicate in cells of human and animal origin under cell culture conditions. Our results suggest that PAV-3 enters but does not replicate in dog, sheep, bovine and human cells.  (+info)

Characterization of Sendai virus M protein mutants that can partially interfere with virus particle production. (40/1328)

Substitution of Val(113) in Sendai virus (SeV) M protein generates non-functional polypeptides, characterized by their exclusion from virus particles and by their ability to interfere with virus particle production. These phenotypic traits correlate with a single-band PAGE migration profile, in contrast to wild-type M (M(wt )), which separates into two species, one of which is a phosphorylated form. The single-band migration is likely to result from a conformational change, as evidenced by the lack of maturation of a native epitope and by a particular tryptic digestion profile, and not from the phosphorylation of all M molecules, an assumption consistent with the PAGE migration feature. One of the M mutants (HA-M(30 ), an M protein carrying Thr(112)Met and Val(113) Glu substitutions tagged with an influenza virus haemagglutinin epitope) was characterized further in the context of SeV infection, i.e. under conditions of co-expression with M(wt). HA-M (30) is shown (i) to bind mainly to membrane fractions, (ii) not to co-precipitate M(wt), as HA-M(wt) does, (iii) to interfere with the binding of nucleocapsids to membranes and (iv) to accumulate in perinuclear regions, in contrast to HA-M(wt ), which is also found at the cell periphery. Such mutants constitute potential tools for the identification of critical steps in paramyxovirus assembly and budding.  (+info)