Detection and culture of Bartonella quintana, Serratia marcescens, and Acinetobacter spp. from decontaminated human body lice. (17/260)

As part of a survey for trench fever among homeless people in Marseilles, France, we attempted isolation of Bartonella quintana from body lice. A decontamination protocol of immersion in 70% ethanol with 0.2% iodine was devised and was tested with a laboratory colony of body lice. Lice which had been experimentally contaminated with either Escherichia coli, Staphylococcus epidermidis, or Acinetobacter spp. were successfully decontaminated, and this process did not prevent the culture of B. quintana from these lice. One hundred sixty-one lice obtained from homeless patients were studied by the protocol. B. quintana was isolated on axenic medium from 15 of 161 body lice and was detected in 41 of 161 lice by PCR. Acinetobacter spp. and Serratia marcescens were also isolated from body lice. The sensitivities of PCR and culture of B. quintana were 98 and 36%, respectively. These procedures may be useful for epidemiologic studies of trench fever and for the recovery of strains for characterization and comparison.  (+info)

Hospital preparedness for victims of chemical or biological terrorism. (18/260)

OBJECTIVES: This study examined hospital preparedness for incidents involving chemical or biological weapons. METHODS: By using a questionnaire survey of 224 hospital emergency departments in 4 northwestern states, we examined administrative plans, training, physical resources, and representative medication inventories. RESULTS: Responses were received from 186 emergency departments (83%). Fewer than 20% of respondent hospitals had plans for biological or chemical weapons incidents. About half (45%) had an indoor or outdoor decontamination unit with isolated ventilation, shower, and water containment systems, but only 12% had 1 or more self-contained breathing apparatuses or supplied air-line respirators. Only 6% had the minimum recommended physical resources for a hypothetical sarin incident. Of the hospitals providing quantitative answers about medication inventories, 64% reported sufficient ciprofloxacin or doxycycline for 50 hypothetical anthrax victims, and only 29% reported sufficient atropine for 50 hypothetical sarin victims (none had enough pralidoxime). CONCLUSIONS: Hospital emergency departments generally are not prepared in an organized fashion to treat victims of chemical or biological terrorism. The planned federal efforts to improve domestic preparedness will require substantial additional resources at the local level to be truly effective.  (+info)

Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. (19/260)

Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (10(5) CFU/ml) Listeria monocytogenes were evaluated at 35 degrees C in water (10 or 85 degrees C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35 degrees C rather than lower (8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35 degrees C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.  (+info)

Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. (20/260)

Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group, Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation from Pseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, and Mycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.  (+info)

Possible remediation of dioxin-polluted soil by steam distillation. (21/260)

2,7-Dichlorodibenzo-p-dioxin (DCDD) was found to evaporate easily with water vapor from a heated solution. Steam distillation was also effective for the removal of DCDD from DCDD-applied soil; its concentration (250 microg/50g soil) in the original soil decreased to less than 5% after steam distillation for only 20 min. Actual dioxin-polluted soil in Tokorozawa City was partially decontaminated using the same method. These results suggest that steam distillation could be a new remedial method for soils contaminated with persistent environmental pollutants, such as dioxins and polychlorinated biphenyls.  (+info)

Precautions against biological and chemical terrorism directed at food and water supplies. (22/260)

Deliberate food and water contamination remains the easiest way to distribute biological or chemical agents for the purpose of terrorism, despite the national focus on dissemination of these agents as small-particle aerosols or volatile liquids. Moreover, biological terrorism as a result of sabotage of our food supply has already occurred in the United States. A review of naturally occurring food- and waterborne outbreaks exposes this vulnerability and reaffirms that, depending on the site of contamination, a significant number of people could be infected or injured over a wide geographic area. Major knowledge gaps exist with regard to the feasibility of current disinfection and inspection methods to protect our food and water against contamination by a number of biological and chemical agents. However, a global increase in food and water safety initiatives combined with enhanced disease surveillance and response activities are our best hope to prevent and respond quickly to food- and waterborne bioterrorism.  (+info)

Biological and chemical terrorism: recognition and management. (23/260)

Primary care physicians will be on the front line in detecting and managing any future terrorist attacks that use chemical or biological agents. This article reviews how to recognize and treat disease caused by exposure to nerve agents, blistering agents, hydrogen cyanide, ricin, anthrax, smallpox, plague, and botulinum toxin.  (+info)

Recognition and management of acute pesticide poisoning. (24/260)

Most poisonings from pesticides do not have a specific antidote, making decontamination the most important intervention. For maximal benefit to the patient, skin, eye, and gastric decontamination should be undertaken while specifics of the poisoning are being determined. As in most illnesses and injuries, the history of the poisoning is of great importance and will determine specific needs for decontamination and therapy, if any exist. Protection of health care workers during the decontamination process is important and frequently overlooked. Skin decontamination is primarily accomplished with large volumes of water, soap, and shampoo. Gastric decontamination by lavage is indicated if ingestion of the poisoning has occurred within 60 minutes of patient presentation. Activated charcoal, combined with a cathartic, is also indicated in most poisonings presenting within 60 minutes of ingestion. With large volume ingestion poisonings, activated charcoal may be used after 60 minutes, but little data exist to support this practice. Syrup of ipecac is no longer recommended for routine use. The cholinergic syndrome "all faucets on" characterizes poisoning by organophosphates and carbamates. Organochlorine insecticides (lindane and other treatments for scabies and lice) can produce seizures with excessive use or use on large areas of nonintact skin. Non-dipyridyl herbicides, biocides (including pyrethrins, pyrethroids, and Bacillus thuringiensis) rarely produce anything other than mild skin, eye, and/or gastrointestinal irritation on topical exposure or ingestion.  (+info)