Effects of phenothiazine neuroleptics on the rate of caffeine demethylation and hydroxylation in the rat liver. (25/200)

The primary metabolic pathways of caffeine are 3-N-demethylation to paraxanthine (CYP1A2), 1-N-demethylation to theobromine and 7-N-demethylation to theophylline (CYP1A2 and other enzymes), and 8-hydroxylation to 1,3,7-trimethyluric acid (CYP3A). The aim of the present study was to investigate the influence of phenothiazine neuroleptics (chlorpromazine, levomepromazine, thioridazine, perazine) on cytochrome P-450 activity measured by caffeine oxidation in rat liver microsomes. The obtained results showed that all the investigated neuroleptics competitively inhibited caffeine oxidation in the rat liver, though their potency to inhibit particular metabolic pathways was not equal. Levomepromazine exerted the most potent inhibitory effect on caffeine oxidation pathways, the effect on 8-hydroxylation being the most pronounced. This indicates inhibition of CYP 1 A2 (inhibition of 3-N- and 1-N-demethylation; Ki = 36 and 32 microM, respectively), CYP3A2 (inhibition of 8-hydroxylations; Ki = 20 microM), and possibly other CYP isoenzymes (inhibition of 7-N-demethylation; Ki = 58 microM) by the neuroleptics. The potency of inhibition of caffeine oxidation by perazine was similar to levomepromazine. Thioridazine was a weaker inhibitor of caffeine 3-N- and 7-N-demethylation, while chlorpromazine was weaker in inhibiting caffeine 1-N- and 7-N-demethylation, compared to levomepromazine. In summary, the obtained results showed that all the investigated neuroleptics had a broad spectra of CYP inhibition in the rat liver. The isoenzymes CYP1A2 and CYP3A2 were distinctly inhibited by all the investigated neuroleptics, while other CYP isoenzymes (CYP2B and/or 2E1) by perazine and levomepromazine. The CYP3A2 inhibition was most pronounced. (Ki = 20-40 microM).  (+info)

Effects of antidepressant drugs on the activity of cytochrome P-450 measured by caffeine oxidation in rat liver microsomes. (26/200)

Caffeine is a marker drug for testing the activity of CYP1A2 (3-N-demethylation) in humans and rats. Moreover, it is also a relatively specific substrate of CYP3A (8-hydroxylation). In the case of 1-N- and in particular 7-N-demethylation of caffeine, apart from CYP1A2, other cytochrome P-450 isoenzymes play a considerable role. The aim of the present study was to investigate the influence of imipramine, amitriptyline and fluoxetine on cytochrome P-450 activity measured by caffeine oxidation in rat liver microsomes. The obtained results showed that imipramine exerted a most potent inhibitory effect on caffeine metabolism. Imipramine decreased the rate of 3-N-, 1-N- and 7-N-demethylations, and 8-hydroxylation of caffeine, the effect on 3-N-demethylation being most pronounced (Ki = 33 microM). Amitriptyline showed distinct inhibition of 3-N- and 1-N-demethylation of caffeine, though its effect was less potent than in the case of imipramine (Ki = 57 and 61 pM, respectively). The influence of amitriptyline on 8-hydroxylation and especially on 7-N-demethylation of caffeine was weaker (Ki = 108 and 190 pM, respectively) than on 3-N- or 1-N-demethylation, suggesting a narrower spectrum of cytochrome P-450 inhibition by amitriptyline than by imipramine, involving mainly the subfamily CYP1A2, and--to a lesser degree--CYP3A. In contrast to the tested tricyclic antidepressants, fluoxetine did not exert any considerable effect on the 3-N- or 1-N-demethylation of caffeine (Ki = 152 and 196 microM, respectively), which indicates its low affinity for CYP1A2. However, fluoxetine displayed a clear inhibitory effect on caffeine 7-N-demethylation (Ki = 72 microM), the reaction which is catalyzed mainly by other than CYP1A2 isoenzymes. Fluoxetine diminished markedly the 8-hydroxylation of the marker drug; as reflected by Ki values, the potency of inhibition of rat CYP3A by fluoxetine was similar to that of imipramine (Ki = 40 and 45 microM, respectively). In summary, CYP1A2 was distinctly inhibited by imipramine and amitriptyline, CYP3A by imipramine and fluoxetine, while other CYP isoenzymes (CYP2B and/or 2E1) by imipramine and fluoxetine.  (+info)

Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. (27/200)

Methylation of specific nucleotides in rRNA is one of the means by which bacteria achieve resistance to macrolides-lincosamides-streptogramin B (MLS(B)) and ketolide antibiotics. The degree of resistance is determined by how effectively the rRNA is methylated. We have implemented a bacterial system in which the rRNA methylations are defined, and in this study we investigate what effect Erm mono- and dimethylation of the rRNA has on the activity of representative MLS(B) and ketolide antibiotics. In the test system, >80% of the rRNA molecules are monomethylated by ErmN (TlrD) or dimethylated by ErmE. ErmE dimethylation confers high resistance to all the MLS(B) and ketolide drugs. ErmN monomethylation predictably confers high resistance to the lincosamides clindamycin and lincomycin, intermediate resistance to the macrolides clarithromycin and erythromycin, and low resistance to the streptogramin B pristinamycin IA. In contrast to the macrolides, monomethylation only mildly affects the antimicrobial activities of the ketolides HMR 3647 (telithromycin) and HMR 3004, and these drugs remain 16 to 250 times as potent as clarithromycin and erythromycin. These differences in the macrolide and ketolide activities could explain the recent reports of variation in the MICs of telithromycin for streptococcal strains that have constitutive erm MLS(B) resistance and are highly resistant to erythromycin.  (+info)

Oxidation of methoxyphenethylamines by cytochrome P450 2D6. Analysis of rate-limiting steps. (28/200)

Cytochrome P450 (P450) 2D6 is involved in the oxidation of a large fraction ( approximately 30%) of drugs used by humans and also catalyzes the O-demethylation of the model substrates 3- and 4-methoxyphenethylamine followed by subsequent ring hydroxylation to dopamine. Burst kinetics were not observed; rate-limiting step(s) must occur prior to product formation. Rates of reduction of ferric P450 2D6 were stimulated by 3- or 4-methoxyphenethylamine or the inhibitor quinidine; reduction is not the most rate-limiting step. The non-competitive intramolecular deuterium isotope effect, an estimate of the intrinsic isotope effect, for 4-methoxyphenethylamine O-demethylation was 9.6. Intermolecular non-competitive deuterium isotope effects of 3.1-3.8 were measured for k(cat) and k(cat)/K(m) for both O-demethylation reactions, implicating at least partially rate-limiting C-H bond breaking. Simulation of steady-state kinetic data yielded a catalytic mechanism dominated by the rates of (i) Fe(2+)O(2)(-) protonation (plus O-O bond scission) and (ii) C-H bond breaking, consistent with the appearance of the spectral intermediates in the steady state, attributed to iron-oxygen complexes. However, all the rates of individual steps (or rates of combined steps) are considerably higher than k(cat), and the contributions of several steps must be considered in understanding rates of the P450 2D6 reactions.  (+info)

A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. (29/200)

Oct-3/4 is the earliest expressed transcription factor that is known to be crucial in murine pre-implantation development. In this report we asked whether methylation participates in controlling changes in Oct-3/4 expression and thus may play an important role in controlling normal embryogenesis. We show that the Oct-3/4 gene is unmethylated from the blastula stage but undergoes de novo methylation at 6.5 days post-coitum and remains modified in all adult somatic tissues analyzed. Oct-3/4 remains unmethylated in 6.25 days post-coitum epiblast cells when other genes, such as apoAI, undergo de novo methylation. We show that methylation of the Oct-3/4 promoter sequence strongly compromises its ability to direct efficient transcription. Moreover, DNA methylation inhibits basal transcription of the endogenous Oct-3/4 gene in vivo. We found that the Oct-3/4 gene harbors a cis-specific demodification element that includes the proximal enhancer sequence. This element leads to demethylation in embryonal carcinoma cells when the sequence is initially methylated and protects the local region from de novo methylation in post-implantation embryos. These results indicate that in the embryo protection from de novo methylation is not a unique feature of imprinted or housekeeping genes that carry a CpG island, but is also applicable to tissue-specific genes expressed during early stages of embryogenesis. Methylation of Oct-3/4 may be analogous to methylation of CpG islands on the inactive X chromosome that also occurs at later stages of development.  (+info)

Allosteric enhancement of adaptational demethylation by a carboxyl-terminal sequence on chemoreceptors. (30/200)

Sensory adaptation in bacterial chemotaxis is mediated by covalent modification of chemoreceptors. Specific glutamyl residues are methylated and demethylated in reactions catalyzed by methyltransferase CheR and methylesterase CheB. In Escherichia coli and Salmonella enterica serovar typhimurium, efficient adaptational modification by either enzyme is dependent on a conserved pentapeptide sequence at the chemoreceptor carboxyl terminus, a position distant from the sites of modification. For CheR-catalyzed methylation, previous work demonstrated that this sequence acts as a high affinity docking site, enhancing methylation by increasing enzyme concentration near methyl-accepting glutamates. We investigated pentapeptide-mediated enhancement of CheB-catalyzed demethylation and found it occurred by a distinctly different mechanism. Assays of binding between CheB and the pentapeptide sequence showed that it was too weak to have a significant effect on local enzyme concentration. Kinetic analyses revealed that interaction of the sequence and the methylesterase enhanced the rate constant of demethylation not the Michaelis constant. This allosteric activation occurred if the sequence was attached to chemoreceptor, but hardly at all if it was present as an isolated peptide. In addition, free peptide inhibited demethylation of the native receptor carrying the pentapeptide sequence at its carboxyl terminus. These observations imply that the allosteric change is transmitted through the protein substrate, not the enzyme.  (+info)

Methylmercury in the environment: a review of current understanding. (31/200)

The danger of methylmercury poisoning appears to be slight when the environment is not directly contaminated with methylmercury. Sediments rapidly bind mercury and decrease its availability to aquatic organisms. Sediments further have a greater propensity to demethylate than to methylate mercury. In noncontaminated aquatic ecosystems, the concentrations of methylmercury and inorganic mercury are many times lower than those that have been found to cause toxicity, even in the most sensitive organisms. Methylmercury bound to protein is comparatively less toxic than methylmercury salts, and selenium present in this protein appear to be one of the major detoxifying agents for methylmercury. This is particularly important in seafood, where there is an excess of selenium compared to methylmercury.  (+info)

Activation of CYP2C9-mediated metabolism by a series of dapsone analogs: kinetics and structural requirements. (32/200)

Cytochrome P450 2C9-mediated metabolism has been shown to be activated in the presence of the effector dapsone. However, it has yet to be established what effector structural features are necessary to activate CYP2C9 activity. To address this question, kinetic studies were conducted with nine analogs of dapsone containing various functional properties (three sulfone compounds, three carbonyl compounds, and three sulfonamide compounds), to examine the functional groups important for enzyme activation by the effector (dapsone). Results show that phenylsulfone (dapsone without the para-amino groups) activates flurbiprofen 4'-hydroxylation comparable to dapsone but inhibits naproxen demethylation. Meanwhile, p-tolylsulfone had little effect on flurbiprofen metabolism, but activated naproxen demethylation, albeit only at high concentrations. These substrate-dependent differences in effect suggest that naproxen has a different binding orientation compared with flurbiprofen. Perhaps most interesting is that replacement of only one amino group from dapsone with a nitro group (4-(4-nitrophenylsulfonyl)-aniline) resulted in substantial inhibition of flurbiprofen 4'-hydroxylation, suggesting that electronic effects may influence activation of this substrate. Other analogs either had minor or no effect on CYP2C9-mediated metabolism. Overall, it is apparent from these studies that a sulfone group in direct association with two benzene rings with para-electron-donating groups represents the most efficient activator of CYP2C9. However, the effects of these analogs appear to be concentration- and substrate-dependent, further complicating the prediction of these types of in vitro interactions.  (+info)