Loading...
(1/33104) GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection.

Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-targeted mice (GM-/-) cleared group B streptococcus (GBS) from the lungs more slowly than wild-type mice. Expression of GM-CSF in the respiratory epithelium of GM-/- mice improved bacterial clearance to levels greater than that in wild-type GM+/+ mice. Acute aerosolization of GM-CSF to GM+/+ mice significantly enhanced clearance of GBS at 24 hours. GBS infection was associated with increased neutrophilic infiltration in lungs of GM-/- mice, while macrophage infiltrates predominated in wild-type mice, suggesting an abnormality in macrophage clearance of bacteria in the absence of GM-CSF. While phagocytosis of GBS was unaltered, production of superoxide radicals and hydrogen peroxide was markedly deficient in macrophages from GM-/- mice. Lipid peroxidation, assessed by measuring the isoprostane 8-iso-PGF2alpha, was decreased in the lungs of GM-/- mice. GM-CSF plays an important role in GBS clearance in vivo, mediated in part by its role in enhancing superoxide and hydrogen peroxide production and bacterial killing by alveolar macrophages.  (+info)

(2/33104) Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation.

We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.  (+info)

(3/33104) Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response.

An interleukin-18 binding protein (IL-18BP) was purified from urine by chromatography on IL-18 beads, sequenced, cloned, and expressed in COS7 cells. IL-18BP abolished IL-18 induction of interferon-gamma (IFNgamma), IL-8, and activation of NF-kappaB in vitro. Administration of IL-18BP to mice abrogated circulating IFNgamma following LPS. Thus, IL-18BP functions as an inhibitor of the early Th1 cytokine response. IL-18BP is constitutively expressed in the spleen, belongs to the immunoglobulin superfamily, and has limited homology to the IL-1 type II receptor. Its gene was localized on human chromosome 11q13, and no exon coding for a transmembrane domain was found in an 8.3 kb genomic sequence. Several Poxviruses encode putative proteins highly homologous to IL-18BP, suggesting that viral products may attenuate IL-18 and interfere with the cytotoxic T cell response.  (+info)

(4/33104) Differential regulation of vascular endothelial growth factor and its receptor fms-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells.

Under conditions associated with local and systemic inflammation, mesangial cells and invading immune cells are likely to be responsible for the release of large amounts of nitric oxide (NO) in the glomerulus. To further define the mechanisms of NO action in the glomerulus, we attempted to identify genes which are regulated by NO in rat glomerular mesangial cells. We identified vascular endothelial growth factor (VEGF) and its receptor fms-like tyrosine kinase (FLT-1) to be under the regulatory control of exogenously applied NO in these cells. Using S-nitroso-glutathione (GSNO) as an NO-donating agent, VEGF expression was strongly induced, whereas expression of its FLT-1 receptor simultaneously decreased. Expressional regulation of VEGF and FLT-1 mRNA was transient and occurred rapidly within 1-3 h after GSNO treatment. Expression of a second VEGF-specific receptor, fetal liver kinase-1 (FLK-1/KDR), could not be detected. The inflammatory cytokine interleukin-1beta mediated a moderate increase in VEGF expression after 24 h and had no influence on FLT-1 expression. In contrast, platelet-derived growth factor-BB and basic fibroblast growth factor had no effect on VEGF expression, but strongly induced FLT-1 mRNA levels. Obviously, there is a differential regulation of VEGF and its receptor FLT-1 by NO, cytokines and growth factors in rat mesangial cells.  (+info)

(5/33104) Borrelia burgdorferi spirochetes induce mast cell activation and cytokine release.

The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-alpha release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-alpha-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells.  (+info)

(6/33104) Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells.

A key function of monocytes/macrophages (Mphi) is to present antigens to T cells. However, upon interaction with bacteria, Mphi lose their ability to effectively present soluble antigens. This functional loss was associated with alterations in the expression of adhesion molecules and CD14 and a reduction in the uptake of soluble antigen. Recently, we have demonstrated that Salmonella typhi flagella (STF) markedly decrease CD14 expression and are potent inducers of proinflammatory cytokine production by human peripheral blood mononuclear cells (hPBMC). In order to determine whether S. typhi and soluble STF also alter the ability of Mphi to activate T cells to proliferate to antigens and mitogens, hPBMC were cultured in the presence of tetanus toxoid (TT) or phytohemagglutinin (PHA) and either killed whole-cell S. typhi or purified STF protein. Both whole-cell S. typhi and STF suppressed proliferation to PHA and TT. This decreased proliferation was not a result of increased Mphi production of nitric oxide, prostaglandin E2, or oxygen radicals or the release of interleukin-1beta, tumor necrosis factor alpha, interleukin-6, or interleukin-10 following exposure to STF. However, the ability to take up soluble antigen, as determined by fluorescein isothiocyanate-labeled dextran uptake, was reduced in cells cultured with STF. Moreover, there was a dramatic reduction in the expression of CD54 on Mphi after exposure to STF. These results indicate that whole-cell S. typhi and STF have the ability to alter in vitro proliferation to soluble antigens and mitogens by affecting Mphi function.  (+info)

(7/33104) Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis.

The molecular mechanisms of resistance to genital infection with the mouse pneumonitis (MoPn) strain of Chlamydia trachomatis are unknown. A role for major histocompatibility complex class II-restricted, interleukin-12-dependent CD4(+) T cells has been established, but the functional activity of these cells does not depend on secretion of gamma interferon. Here we examined the potential contribution of T-cell-mediated cytotoxicity and apoptosis to mucosal clearance of MoPn by using mice deficient in the molecular mediators of target cell lysis. Animals lacking perforin, Fas, Fas ligand, or both perforin and Fas ligand were infected genitally with C. trachomatis MoPn and monitored for expression of immunity to chlamydial antigens and clearance of MoPn from the genital mucosa. In each case, the profile of spleen cytokine production, the magnitude of the host antibody response, and the kinetics of chlamydial clearance were similar to those of genetically intact controls. Compensatory overproduction of tumor necrosis factor alpha, an alternate mediator of apoptosis in certain cell types, did not appear to account for the ability of mutant mice to resolve Chlamydia infections. These results fail to support CD4(+) T-cell-mediated apoptosis or CD8(+) T-cell-mediated cytotoxicity as being critical to the clearance of C. trachomatis MoPn urogenital infections.  (+info)

(8/33104) Effect of transforming growth factor beta on experimental Salmonella typhimurium infection in mice.

We have investigated the effect of the in vivo administration of recombinant transforming growth factor beta (rTGF-beta) on the pathogenic mechanisms involved in Salmonella typhimurium experimental infection in mice. The protective response elicited by macrophages was induced by rTGF-beta1 by 2 days after experimental infection, as demonstrated by an increased NO production, while the humoral protective effect began with cytokine mRNA expression 2 days after the challenge and continued after 5 days with cytokine release and lymphocyte activation. We demonstrated that all mice who received rTGF-beta1 survived 7 days after infection. The number of bacteria recovered in the spleens and in the livers of rTGF-beta1-treated mice 2 and 5 days after infection was significantly smaller than that found in the same organs after phosphate-buffered saline (PBS) inoculation. Furthermore, 2 and 5 days after infection, splenic macrophages from rTGF-beta1-treated mice showed a greater NO production than did those from PBS-treated mice. The effect of rTGF-beta1 on S. typhimurium infection in mice was correlated with the expression of cell costimulatory CD28 molecules. Five days after S. typhimurium infection, the percentage of CD28(+)-expressing T cells in splenic lymphocytes from rTGF-beta1-treated mice increased with respect to that from control mice. Gamma interferon (IFN-gamma) mRNA was present in a greater amount in spleen cells from rTGF-beta1-treated mice after 2 days, although the intensity of the band decreased 5 days after the challenge. A similar pattern was obtained with the mRNAs for interleukin-1alpha (IL-1alpha), IL-6, TGF-beta, and inducible nitric oxide synthase, which showed greater expression in cells obtained from rTGF-beta1-treated and S. typhimurium-infected mice 2 days after challenge. The treatment with rTGF-beta1 induced an increase in IL-1alpha and IFN-gamma release in the supernatant of splenocyte cultures 5 days after the experimental infection with S. typhimurium. Moreover, we demonstrated that 5 days after infection, the IFN-gamma titer was significantly greater in the sera of rTGF-beta-treated mice than in those of PBS-treated mice. Also, hsp60 showed greater expression 2 days after the challenge in splenocytes from rTGF-beta1-treated mice. The role played by proinflammatory and immunoregulatory cytokines and by CD28 is discussed.  (+info)