Evaluation of relative contributions of two enzymes supposed to metabolise hydrogen peroxide in Paracoccus denitrificans. (1/191)

A biosensor exploiting an electrochemically mediated enzyme-catalysed reaction was used to quantify relative contributions of cytoplasmic catalase and periplasmic cytochrome c peroxidase to the overall rate of hydrogen peroxide breakdown in cells of Paracoccus denitrificans. The effects of antimycin (an inhibitor of electron flow to cytochrome c peroxidase), the reaction rate versus substrate concentration profiles for the whole cells and subcellular fractions, and the time courses of oxygen concentration demonstrated a profound decrease in the capacity of cytochrome c peroxidase to reduce H2O2 under in vivo conditions. The reason is suggested to be a competition for available electrons between the enzyme and terminal oxidases metabolising oxygen produced by catalase.  (+info)

A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization. (2/191)

Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 microM and allowing a maximal catalytic centre activity of 116,000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature.  (+info)

Conversion of an engineered potassium-binding site into a calcium-selective site in cytochrome c peroxidase. (3/191)

We have previously shown that the K(+) site found in ascorbate peroxidase can be successfully engineered into the closely homologous peroxidase, cytochrome c peroxidase (CCP) (Bonagura, C. A. , Sundaramoorthy, M., Pappa, H. S., Patterson, W. R., and Poulos, T. L. (1996) Biochemistry 35, 6107-6115; Bonagura, C. A., Sundaramoorthy, M., Bhaskar, B., and Poulos, T. L. (1999) Biochemistry 38, 5538-5545). All other peroxidases bind Ca(2+) rather than K(+). Using the K(+)-binding CCP mutant (CCPK2) as a template protein, together with observations from structural modeling, mutants were designed that should bind Ca(2+) selectively. The crystal structure of the first generation mutant, CCPCA1, showed that a smaller cation, perhaps Na(+), is bound instead of Ca(2+). This is probably because the full eight-ligand coordination sphere did not form owing to a local disordering of one of the essential cation ligands. Based on these observations, a second mutant, CCPCA2, was designed. The crystal structure showed Ca(2+) binding in the CCPCA2 mutant and a well ordered cation-binding loop with the full complement of eight protein to cation ligands. Because cation binding to the engineered loop results in diminished CCP activity and destabilization of the essential Trp(191) radical as measured by EPR spectroscopy, these measurements can be used as sensitive methods for determining cation-binding selectivity. Both activity and EPR titration studies show that CCPCA2 binds Ca(2+) more effectively than K(+), demonstrating that an iterative protein engineering-based approach is important in switching protein cation selectivity.  (+info)

A relation between the principal axes of inertia and ligand binding. (4/191)

The principal axes of inertia are eigenvectors that can be calculated for any rigid body. We report studies of the position of the principal axes in crystallographically solved protein molecules. We find with high frequency that at least one principal axis penetrates the surface of the respective protein in a region used for ligand binding. In antibody variable regions, an axis goes through the third hypervariable loop of the heavy chain. In major histocompatibility complex proteins, an axis goes through the peptide-binding groove. In protein-protein heterodimers, a principal axis of one subunit will often penetrate the interface formed with the other subunit. In many of these protein-protein complexes, the axis specifically intersects residues known to be critical for molecular recognition.  (+info)

Unusual oxidative chemistry of N(omega)-hydroxyarginine and N-hydroxyguanidine catalyzed at an engineered cavity in a heme peroxidase. (5/191)

Heme enzymes are capable of catalyzing a range of oxidative chemistry with high specificity, depending on the surrounding protein environment. We describe here a reaction catalyzed by a mutant of cytochrome c peroxidase, which is similar but distinct from those catalyzed by nitric-oxide synthase. In the R48A mutant, an expanded water-filled cavity was created above the distal heme face. N-hydroxyguanidine (NHG) but not guanidine was shown to bind in the cavity with K(d) = 8.5 mM, and coordinate to the heme to give a low spin state. Reaction of R48A with peroxide produced a Fe(IV)=O/Trp(.+) center capable of oxidizing either NHG or N(omega)-hydroxyarginine (NHA), but not arginine or guanidine, by a multi-turnover catalytic process. Oxidation of either NHG or NHA by R48A did not result in the accumulation of NO, NO(2)(-), NO(3)(-), urea, or citrulline, but instead afforded a yellow product with absorption maxima of 257 and 400 nm. Mass spectrometry of the derivatized NHA products identified the yellow species as N-nitrosoarginine. We suggest that a nitrosylating agent, possibly derived from HNO, is produced by the oxidation of one molecule of substrate. This then reacts with a second substrate molecule to form the observed N-nitroso products. This complex chemistry illustrates how the active sites of enzymes such as nitric-oxide synthase may serve to prevent alternative reactions from occurring, in addition to enabling those desired.  (+info)

Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. (6/191)

A nonmucoid clinical isolate of Pseudomonas aeruginosa, strain 808, elaborated ATP-dependent and ATP-independent types of cytotoxic factors in the growth medium. These cytotoxic factors, active against macrophages, were secreted during the exponential phase of growth in a complex medium. Commensurate with the appearance of the cytotoxic activities in the cell-free growth medium, several ATP-utilizing enzymic activities, such as adenylate kinase, nucleoside diphosphate kinase and 5'-nucleotidase (ATPase and/or phosphatase), were detected in the medium. These ATP-utilizing enzymes are believed to convert external ATP, presumably effluxed from macrophages, to various adenine nucleotides, which then activate purinergic receptors such as P2Z, leading to enhanced macrophage cell death. Pretreatment of macrophages with periodate-oxidized ATP (oATP), which is an irreversible inhibitor of P2Z receptor activation, prevented subsequent ATP-induced macrophage cell death. A second type of cytotoxic factor(s) operated in an ATP-independent manner such that it triggered activation of apoptotic processes in macrophages, leading to proteolytic conversion of procaspase-3 to active caspase-3. This cytotoxic factor(s) did not appear to act on procaspase-3 present in macrophage cytosolic extracts. Intact macrophages, when exposed to the cytotoxic factor(s) for 6-16 h, underwent apoptosis and demonstrated the presence of active caspase-3 in their cytosolic extracts. Interestingly, two redox proteins, azurin and cytochrome c(551), were detected in the cytotoxic preparation. When cell-line-derived or peritoneal macrophages or mast cells were incubated overnight with Q-Sepharose column flow-through fraction or with a mixture of azurin and cytochrome c(551), they underwent extensive cell death due to induction of apoptosis.  (+info)

Cloning, overproduction and characterization of cytochrome c peroxidase from the purple phototrophic bacterium Rhodobacter capsulatus. (7/191)

The bacterial cytochrome c peroxidase (BCCP) from Rhodobacter capsulatus was purified as a recombinant protein from an Escherichia coli clone over-expressing the BCCP structural gene. BCCP from Rb. capsulatus oxidizes the Rhodobacter cytochrome c2 and reduces hydrogen peroxide, probably functioning as a detoxification mechanism. The enzyme binds two haem c groups covalently. The gene encoding BCCP from Rb. capsulatus was cloned through the construction of a 7-kb subgenomic clone. In comparison with the protein sequence, the sequence deduced from the gene has a 21-amino-acid N-terminal extension with the characteristics of a signal peptide. The purified recombinant enzyme showed the same physico-chemical properties as the native enzyme. Spectrophotometric titration established the presence of a high-potential (Em=+270 mV) and a low-potential haem (between -190 mV and -310 mV) as found in other BCCPs. The enzyme was isolated in the fully oxidized but inactive form. It binds calcium tightly and EGTA treatment of the enzyme was necessary to show calcium activation of the mixed valence enzyme. This activation is associated with the formation of a high-spin state at the low-potential haem. BCCP oxidizes horse ferrocytochrome c better than the native electron donor, cytochrome c2; the catalytic activities ('turnover number') are 85 800 min(-1) and 63 600 min(-1), respectively. These activities are the highest ever found for a BCCP.  (+info)

Excision of a proposed electron transfer pathway in cytochrome c peroxidase and its replacement by a ligand-binding channel. (8/191)

A previously proposed electron transfer (ET) pathway in the heme enzyme cytochrome c peroxidase has been excised from the structure, leaving an open ligand-binding channel in its place. Earlier studies on cavity mutants of this enzyme have revealed structural plasticity in this region of the molecule. Analysis of these structures has allowed the design of a variant in which the specific section of protein backbone representing a previously proposed ET pathway is accurately extracted from the protein. A crystal structure verified the creation of an open channel that overlays the removed segment, extending from the surface of the protein to the heme at the core of the protein. A number of heterocyclic cations were found to bind to the proximal-channel mutant with affinities that can be rationalized based on the structures. It is proposed that small ligands bind more weakly to the proximal-channel mutant than to the W191G cavity due to an increased off rate of the open channel, whereas larger ligands are able to bind to the channel mutant without inducing large conformational changes. The structure of benzimidazole bound to the proximal-channel mutant shows that the ligand accurately overlays the position of the tryptophan radical center that was removed from the wild-type enzyme and displaces four of the eight ordered solvent molecules seen in the empty cavity. Ligand binding also caused a small rearrangement of the redesigned protein loop, perhaps as a result of improved electrostatic interactions with the ligand. The engineered channel offers the potential for introducing synthetic replacements for the removed structure, such as sensitizer-linked substrates. These installed "molecular wires" could be used to rapidly initiate reactions, trap reactive intermediates, or answer unresolved questions about ET pathways.  (+info)