Effects of subunit I mutations on redox-linked conformational changes of the Escherichia coli bo-type ubiquinol oxidase revealed by Fourier-transform infrared spectroscopy. (25/1463)

Cytochrome bo is the heme-copper terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli, and functions as a redox-coupled proton pump. As an extension to our mutagenesis and Fourier-transform infrared studies on ion pumps, we examined the effects of subunit I mutations on redox-linked protein structural changes in cytochrome bo. Upon photo-reduction in the presence of riboflavin, Y288F and H333A showed profound effects in their peptide backbone vibrations (amide-I and amide-II), probably due to the loss of CuB or replacement of high-spin heme o with heme B. In the frequency region of protonated carboxylic C=O stretching vibrations, negative 1,743 cm-1 and positive 1,720 cm-1 bands were observed in the wild-type; the former shifted to 1,741 cm-1 in E286D but not in other mutants including D135N. This suggests that Glu286 in the D-channel is protonated in the air-oxidized state and undergoes hydrogen bonding changes upon reduction of the redox metal centers. Two pairs of band shifts at 2,566 (+)/2,574 (-) and 2,546 (+)/2,556 (-) cm-1 in all mutants indicate that two cysteine residues not in the vicinity of the metal centers undergo redox-linked hydrogen bonding changes. Cyanide had no effect on the protein structural changes because of the rigid local protein structure around the binuclear center or the presence of a ligand(s) at the binuclear center, and was released from the binuclear center upon reduction. This study establishes that cytochrome bo undergoes unique redox-linked protein structural changes. Localization and time-resolved analysis of the structural changes during dioxygen reduction will facilitate understanding of the molecular mechanism of redox-coupled proton pumping at the atomic level.  (+info)

Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). (26/1463)

Rates of nucleotide substitution for nuclear genes are thought to be governed primarily by the number of germ line replication events (the so-called "generation time" hypothesis). In contrast, rates of mitochondrial DNA evolution appear to be set primarily by DNA damage pathways of mutation mediated by mutagenic by-products of oxidative phosphorylation (the so-called "metabolic-rate" hypothesis). Comparison of synonymous substitution rates estimated for the mitochondrial cytochrome b gene and nuclear-encoded dlx, hsp70, and RAG-1 genes in mammals and sharks shows that rates of molecular evolution for sharks are approximately an order of magnitude slower than those for mammals for both nuclear and mitochondrial genes. In addition, there is significant positive covariation of substitution rate for mitochondrial and nuclear genes within sharks. These results, interpreted in light of the pervasiveness of DNA damage by mutagenic by-products of oxygen metabolism to both nuclear and mitochondrial genes and coupled with increasing evidence for cross-genome activity of DNA repair enzymes, suggest that molecular clocks for mitochondrial and nuclear genes may be set primarily by common mutational mechanisms.  (+info)

Effect of redox state on unfolding energetics of heme proteins. (27/1463)

Both the enthalpic and entropic contributions to unfolding of three heme proteins, cytochrome b(562), cytochrome c and myoglobin, are larger for the reduced than for the oxidized form. Thus, the higher thermodynamic stability of a reduced, as compared to an oxidized, heme protein is the net result of a large increase of favorable enthalpy and a small increase in unfavorable entropy. Upon comparing the unfolding energetics of the heme proteins to those of other single-domain proteins I find that protein length is the primary determinant of the thermodynamics.  (+info)

Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. (28/1463)

We isolated a toluene-sensitive mutant, named mutant No. 32, which showed unchanged antibiotic resistance levels, from toluene-tolerant Pseudomonas putida IH-2000 by transposon mutagenesis with Tn5. The gene disrupted by insertion of Tn5 was identified as cyoC, which is one of the subunits of cytochrome o. The membrane protein, phospholipid, and lipopolysaccharide (LPS) of IH-2000 and that of mutant No. 32 were examined and compared. Some of the outer membrane proteins showed a decrease in mutant No. 32. The fatty acid components of LPS were found to be dodecanoic acid, 2-hydroxydodecanoic acid, 3-hydroxydodecanoic acid, and 3-hydroxydecanoic acid in both IH-2000 and No. 32; however, the relative proportions of these components differed in the two strains. Furthermore, cell surface hydrophobicity was increased in No. 32. These data suggest that mutation of cyoC caused the decrease in outer membrane proteins and the changing fatty acid composition of LPS. These changes in the outer membrane would cause an increase in cell surface hydrophobicity, and mutant No. 32 is considered to be sensitive to toluene.  (+info)

The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). (29/1463)

An activation domain in p67(phox) (residues within 199-210) is essential for cytochrome b(558)-dependent activation of NADPH superoxide (O2(-.)) generation in a cell-free system (Han, C.-H., Freeman, J. L. R., Lee, T., Motalebi, S. A., and Lambeth, J. D. (1998) J. Biol. Chem. 273, 16663-16668). To determine the steady state reduction flavin in the presence of highly absorbing hemes, 8-nor-8-S-thioacetamido-FAD ("thioacetamido-FAD") was reconstituted into the flavocytochrome, and the fluorescence of its oxidized form was monitored. Thioacetamido-FAD-reconstituted cytochrome showed lower activity (7% versus 100%) and increased steady state flavin reduction (28 versus <5%) compared with the enzyme reconstituted with native FAD. Omission of p67(phox) decreased the percent steady state reduction of the flavin to 4%, but omission of p47(phox) had little effect. The activation domain on p67(phox) was critical for regulating flavin reduction, since mutations in this region that decreased O2(-.) generation also decreased the steady state reduction of flavin. Thus, the activation domain on p67(phox) regulates the reductive half-reaction for FAD. This reaction is comprised of the binding of NADPH followed by hydride transfer to the flavin. Kinetic deuterium isotope effects along with K(m) values permitted calculation of the K(d) for NADPH. (R)-NADPD but not (S)-NADPD showed kinetic deuterium isotope effects on V and V/K of about 1.9 and 1.5, respectively, demonstrating stereospecificity for the R hydride transfer. The calculated K(d) for NADPH was 40 microM in the presence of wild type p67(phox) and was approximately 55 microM using the weakly activating p67(phox)(V205A). Thus, the activation domain of p67(phox) regulates the reduction of FAD but has only a small effect on NADPH binding, consistent with a dominant effect on hydride/electron transfer from NADPH to FAD.  (+info)

An unusual cytochrome o'-type cytochrome c oxidase in a Bacillus cereus cytochrome a3 mutant has a very high affinity for oxygen. (30/1463)

Bacillus cereus strain PYM1 is a mutant unable to synthesize haem A or spectrally detectable cytochromes aa3 or caa3. The nature of the remaining oxidase(s) catalysing oxygen uptake has been studied. Respiratory oxidase activities and the levels of cytochromes b and c increased 2.6- to 4.2-fold on transition from exponential growth, in either of two media, to sporulation stage III, as previously observed for the parent wild-type strain. NADH oxidase activity at both stages of culture was several-fold higher than ascorbate plus tetramethyl-p-phenylenediamine (TMPD) oxidase activity, consistent with the TMPD- phenotype of strain PYM1. Oxidase activity with ascorbate as substrate was significant even in the absence of TMPD as electron mediator, suggesting that the terminal oxidase receives electrons from a cytochrome c. Carbon monoxide (CO) difference spectra of membranes were obtained using various reductants (ascorbate +/- TMPD, NADH, dithionite) and revealed a haemoprotein resembling cytochrome o'. The CO complex of this cytochrome was photodissociable: the photodissociation spectrum (photolysed minus CO-ligated) exhibited a trough at 416 nm and a peak at 436 nm, together with minor features in the alpha/beta region of the spectrum, consistent with the presence of a cytochrome o'-like pigment. CO recombination occurred at -85 to -95 degrees C. No other haemoproteins showing photoreversible CO binding under these conditions were detected. Evidence that this pigment was the oxidase responsible for substrate oxidation was obtained by photodissociating the CO complex at subzero temperatures in the presence of oxygen; this resulted in faster ligand recombination, attributed to oxygen binding, and extensive oxidation of cytochromes c and b. The oxygen affinity of the oxidase was determined by using the deoxygenation of oxyleghaemoglobin as a sensitive reporter of dissociated oxygen concentration. A single oxidase was revealed with a K(m) for oxygen of about 8 nM; this is one of the highest affinities yet reported for a terminal oxidase.  (+info)

The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. (31/1463)

Succinate dehydrogenase (SDH) participates in the mitochondrial electron transport chain by oxidizing succinate to fumarate and transferring the electrons to ubiquinone. In yeast, it is composed of a catalytic dimer, comprising the Sdh1p and Sdh2p subunits, and a membrane domain, comprising two smaller hydrophobic subunits, Sdh3p and Sdh4p, which anchor the enzyme to the mitochondrial inner membrane. To investigate the role of the Sdh3p anchor polypeptide in enzyme assembly and catalysis, we isolated and characterized seven mutations in the SDH3 gene. Two mutations are premature truncations of Sdh3p with losses of one or three transmembrane segments. The remaining five are missense mutations that are clustered between amino acids 103 and 117, which are proposed to be located in transmembrane segment II or the matrix-localized loop connecting segments II and III. Three mutations, F103V, H113Q, and W116R, strongly but specifically impair quinone reductase activities but have only minor effects on enzyme assembly. The clustering of the mutations strongly suggests that a ubiquinone-binding site is associated with this region of Sdh3p. In addition, the biphasic inhibition of quinone reductase activity by a dinitrophenol inhibitor supports the hypothesis that two distinct quinone-binding sites are present in the yeast SDH.  (+info)

An engineered cytochrome b6c1 complex with a split cytochrome b is able to support photosynthetic growth of Rhodobacter capsulatus. (32/1463)

The ubihydroquinone-cytochrome c oxidoreductase (or the cytochrome bc1 complex) from Rhodobacter capsulatus is composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits encoded by petA(fbcF), petB(fbcB), and petC(fbcC) genes organized as an operon. In the work reported here, petB(fbcB) was split genetically into two cistrons, petB6 and petBIV, which encoded two polypeptides corresponding to the four amino-terminal and four carboxyl-terminal transmembrane helices of cytochrome b, respectively. These polypeptides resembled the cytochrome b6 and su IV subunits of chloroplast cytochrome b6f complexes, and together with the unmodified subunits of the cytochrome bc1 complex, they formed a novel enzyme, named cytochrome b6c1 complex. This membrane-bound multisubunit complex was functional, and despite its smaller amount, it was able to support the photosynthetic growth of R. capsulatus. Upon further mutagenesis, a mutant overproducing it, due to a C-to-T transition at the second base of the second codon of petBIV, was obtained. Biochemical analyses, including electron paramagnetic spectroscopy, with this mutant revealed that the properties of the cytochrome b6c1 complex were similar to those of the cytochrome bc1 complex. In particular, it was highly sensitive to inhibitors of the cytochrome bc1 complex, including antimycin A, and the redox properties of its b- and c-type heme prosthetic groups were unchanged. However, the optical absorption spectrum of its cytochrome bL heme was modified in a way reminiscent of that of a cytochrome b6f complex. Based on the work described here and that with Rhodobacter sphaeroides (R. Kuras, M. Guergova-Kuras, and A. R. Crofts, Biochemistry 37:16280-16288, 1998), it appears that neither the inhibitor resistance nor the redox potential differences observed between the bacterial (or mitochondrial) cytochrome bc1 complexes and the chloroplast cytochrome b6f complexes are direct consequences of splitting cytochrome b into two separate polypeptides. The overall findings also illustrate the possible evolutionary relationships among various cytochrome bc oxidoreductases.  (+info)