Evidence on the conformation of HeLa-cell 5.8S ribosomal ribonucleic acid from the reaction of specific cytidine residues with sodium bisulphite. (1/579)

The reaction of HeLa-cell 5.8S rRNA with NaHSO3 under conditions in which exposed cytidine residues are deaminated to uridine was studied. It was possible to estimate the reactivities of most of the 46 cytidine residues in the nucleotide sequence by comparing 'fingerprints' of the bisulphite-treated RNA with those of untreated RNA. The findings were consistent with the main features of the secondary-structure model for mammalian 5.85S rRNA proposed by Nazar, Sitz, & Busch [J. Biol. Chem (1975) 250, 8591--8597]. Five out of six regions that are depicted in the model as single-stranded loops contain cytidine residues that are reactive towards bisulphite at 25 degrees C (the other loop contains no cytidine). The cytidine residue nearest to the 3'-terminus is also reactive. Several cytidines residues that are internally located within proposed double-helical regions show little or no reactivity towards bisulphite, but the cytidine residues of several C.G pairs at the ends of helical regions show some reactivity, and one of the proposed loops appears to contain six nucleotides, rather than the minimum of four suggested by the primary structure. Two cytidine residues that are thought to be 'looped out' by small helix imperfections also show some reactivity.  (+info)

End group of naturally terminated and UV lesion terminated T7 in vitro RNA. (2/579)

The 3' terminal nucleosides of RNA transcribed in vitro by E. coli RNA polymerase from T7 DNA and UV irradiated TN DNA were determined. The 3' terminal nucleoside of naturally terminated (t1 termination site) RNA cytidine. In the case of RNA terminated at UV lesions, it is cytidine in 0 per cent of the molecules and adenosine in the remaining 30 per cent. Cytidine trialcohols are labile in high concentrations of KOH and at high temperature and appear to convert to uridine.  (+info)

Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol. (3/579)

Many mutation detection techniques rely upon recognition of mismatched base pairs in DNA hetero-duplexes. Potassium permanganate in combination with tetraethylammonium chloride (TEAC) is capable of chemically modifying mismatched thymidine residues. The DNA strand can then be cleaved at that point by treatment with piperidine. The reactivity of potassium permanganate (KMnO4) in TEAC toward mismatches was investigated in 29 different mutations, representing 58 mismatched base pairs and 116 mismatched bases. All mismatched thymidine residues were modified by KMnO4/TEAC with the majority of these showing strong reactivity. KMnO4/TEAC was also able to modify many mismatched guanosine and cytidine residues, as well as matched guanosine, cytidine and thymidine residues adjacent to, or nearby, mismatched base pairs. Previous techniques using osmium tetroxide (OsO4) to modify mismatched thymidine residues have been limited by the apparent lack of reactivity of a third of all T/G mismatches. KMnO4/TEAC showed no such phenomenon. In this series, all 29 mutations were detected by KMnO4/TEAC treatment. The latest development of the Single Tube Chemical Cleavage of Mismatch Method detects both thymidine and cytidine mismatches by KMnO4/TEAC and hydroxylamine (NH2OH) in a single tube without a clean-up step in between the two reactions. This technique saves time and material without disrupting the sensitivity and efficiency of either reaction.  (+info)

Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. (4/579)

Asthma is an inflammatory disease of the airways that is induced by Th2 cytokines and inhibited by Th1 cytokines. Despite a steady increase in the incidence, morbidity, and mortality from asthma, no current treatment can reduce or prevent asthma for a prolonged period. We examined the ability of unmethylated CpG oligodeoxynucleotides (ODN), which are potent inducers of Th1 cytokines, to prevent the inflammatory and physiological manifestations of asthma in mice sensitized to ragweed allergen. Administration of CpG ODN 48 h before allergen challenge increased the ratio of IFN-gamma to IL-4 secreting cells, diminished allergen-induced eosinophil recruitment, and decreased the number of ragweed allergen-specific IgE-producing cells. These effects of CpG ODN were sustained for at least 6 wk after its administration. Furthermore, there was a vigorous Th1 memory response to the recall Ag, inhibition of peribronchial and perivascular lung inflammation, and inhibition of bronchial hyperresponsiveness 6 wk after administration of CpG ODN. Administration of CpG ODN in IFN-gamma -/- mice failed to inhibit eosinophil recruitment, indicating a critical role of IFN-gamma in mediating these effects. This is the first report of a treatment that inhibits allergic lung inflammation in presensitized animals for a prolonged period and thus has relevance to the development of an effective long term treatment for asthma.  (+info)

The uptake and metabolism of uridine by the slime mould Physarum polycephalum. (5/579)

1. Uridine is taken up by microplasmodia of Physarum polycephalum via a saturatable transport system with an apparent Km of 29 muM. An intracellular concentration significantly higher than that in the growth medium is attained, suggesting that the uptake is an active process. Both deoxyribonucleosides and ribonucleosides are competitive inhibitors of the uptake of uridine. 2. In contrast, the rate of entry of uridine into surface plasmodia is a linear function of the concentration of the nucleoside in the growth medium, and the uptake is not inhibited by other nucleosides. 3. As well as serving as a source of pyrimidine nucleotides for the synthesis of nucleic acids, uridine is also catabolised by P. polycephalum. Uracil accumulates in the growth medium and there is also significant conversion of C-2 of the pyrimidine ring to CO2. The proportion of uridine subject to catabolism in surface plasmodia is less than that observed for microplasmodia.  (+info)

Induction of gadd153 mRNA by nutrient deprivation is overcome by glutamine. (6/579)

The growth arrest and DNA damage-inducible (gadd) genes are co-ordinately activated by a variety of genotoxic agents and/or growth-cessation signals. The regulation of gadd153 mRNA was investigated in renal proximal tubular epithelial cells (LLC-PK1) cultured in a nutrient- and serum-deprived medium. The addition of glutamine alone to LLC-PK1 cells cultured in Earl's balanced salt solution (EBSS) is sufficient to suppress gadd153 mRNA expression, and the removal of only glutamine from Dulbecco's modified Eagle's medium (DMEM) is also sufficient to induce gadd153 mRNA expression. Consistent with these findings, the inhibition of glutamine utilization with acivicin and 6-diazo-5-oxo-l-norleucine (DON) in cells grown in a glutamine-containing medium effectively induces gadd153 expression. Glutamine can be used as an energy source in cultured mammalian cells. However, it is unlikely that deficits in cellular energy stores (ATP) are coupled to gadd153 mRNA expression, because concentrations of ATP, UTP and GTP are all elevated in EBSS-exposed cells, and the addition of alpha-oxoglutarate to cells grown in EBSS has no effect on gadd153 mRNA expression. In contrast, concentrations of CTP decline substantially in EBSS and glutamine-deprived DMEM-cultured cells. Glutamine also serves as a precursor for the synthesis of protein and DNA. The addition of glutamine to cells grown in EBSS partly restores CTP concentrations. The addition of pyrimidine ribonucleosides (cytidine and uridine) to LLC-PK1 cells also restores CTP concentrations, in a manner commensurate with their relative abilities to overcome gadd153 expression. Finally, glutamine does not completely suppress DNA damage-induced gadd153 expression, suggesting that multiple signalling pathways lead to the expression of gadd153 mRNA under conditions of nutrient deprivation and DNA damage.  (+info)

Molecular recognition motifs in cytidinium and 2'-deoxycytidinium salts with composite anions. (7/579)

In the crystal structures of N3-protonated cytidinium and 2'-deoxycytidinium salts with composite XYn anions capable of accepting hydrogen bonds through their Y atoms, the dominating motif of cytosinium...anion interactions consists of a pair of hydrogen bonds donated from the N3+ -H protonation site and from the exoamino N4-H41 group cis to N3, and accepted by two Y centers of one anion. This multipoint recognition pattern is stable and robust and thus can be classified as a supramolecular synthon. In a broader group of N3-protonated, N1-substituted cytosinium salts with composite anions it occurs with 70% frequency. The C5 side of the cytosine ring mimics the N3+ -H type synthon and shows a propensity to form an analogous motif in which a C5-H5...Y hydrogen bond replaces the strong N3+ -H...Y interaction. Since the C-H...Y bond is much weaker, the secondary motif shows higher deformability and is less frequent (44%).  (+info)

Mechanism of the mutagenic action of hydroxylamine. IX. The UV-induced cleavage of the N-O bond in N4-hydroxy-and N4-methoxycytidine and N6-methoxyadenosine. (8/579)

The principal UV-induced (lambda = 2546nm) reaction of N4-hydroxy- and N4methoxycytidines and N6-methoxyadenosine in neutral aqueous solutions is cleavage of the exocyclic N-O bond with the respective formation of cytidine and adenosine. Quantum yields are 2.8x10(-3) and 2.2x10(-3) M/E for the first two compounds and 9.1x10(-3) M/E for N6-methoxyadenosine.  (+info)