Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. (1/642)

The cysteine endopeptidase, cathepsin (Cat) B, and its endogenous inhibitor, stefin A, were found relevant for cancer progression of many neoplasms, including human brain tumors. Histological sections of 100 primary brain tumors, 27 benign and 73 malignant, were stained immunohistochemically for Cat B and stefin A. The immunohistochemical staining of Cat B in tumor cells, endothelial cells, and macrophages was scored separately from 0-12. The score in tumor and endothelial cells was significantly higher in malignant tumors compared with benign tumors (P<0.000). A significant correlation between immunostaining of Cat B (scored together for tumor and endothelial cells) and clinical parameters, such as duration of symptoms, Karnofsky score, psycho-organic symptoms, and histological score was demonstrated. Univariate survival analysis indicated that total Cat B score above 8 was a significant predictor for shorter overall survival (P = 0.003). In glioblastoma multiforme, intense Cat B staining of endothelial cells was a significant predictor for shorter survival (P = 0.003). Stefin A immunostaining was weak and detected only in a few benign and some malignant tumors, suggesting that this inhibitor alone is not sufficient in balancing proteolytic activity of Cat B. We conclude that specific immunostaining of Cat B in tumor and endothelial cells can be used to predict the risk of death in patients with primary tumors of the central nervous system.  (+info)

Intracellular accumulation of the amyloidogenic L68Q variant of human cystatin C in NIH/3T3 cells. (2/642)

AIM: To study the cellular transport of L68Q cystatin C, the cystatin variant causing amyloidosis and brain haemorrhage in patients suffering from hereditary cystatin C amyloid angiopathy (HCCAA). METHODS: Expression vectors for wild-type and L68Q cystatin C were constructed and used to transfect mouse NIH/3T3 cells. Stable cell clones were isolated after cotransfection with pSV2neo. Clones expressing human wild-type and L68Q cystatin C were compared with respect to secreted cystatin C by enzyme linked immunosorbent assay (ELISA), and for intracellular cystatin C by western blotting and immunofluorescence cytochemistry. Colocalisation studies in cells were performed by double staining with antibodies against human cystatin C and marker proteins for lysosomes, the Golgi apparatus, or the endoplasmic reticulum, and evaluated by confocal microscopy. RESULTS: Concentrations of human cystatin C secreted from transfected NIH/3T3 cells were similar to those secreted from human cells in culture. In general, clones expressing the gene encoding L68Q cystatin C secreted slightly lower amounts of the protein than clones expressing wild-type human cystatin C. Both immunofluorescence cytochemistry and western blotting experiments showed an increased accumulation of cystatin C in cells expressing the gene encoding L68Q cystatin C compared with cells expressing the gene for the wild-type protein. The intracellularly accumulating L68Q cystatin C was insoluble and located mainly in the endoplasmic reticulum. CONCLUSIONS: The cellular transport of human cystatin C is impeded by the pathogenic amino acid substitution Leu68-->Gln. The resulting intracellular accumulation and increased localised concentration of L68Q cystatin C might be an important event in the molecular pathophysiology of amyloid formation and brain haemorrhage in patients with HCCAA.  (+info)

Hydrophobic sequences can substitute for the wild-type N-terminal sequence of cystatin A (stefin A) in tight binding to cysteine proteinases selection of high-affinity N-terminal region variants by phage display. (3/642)

A phage-display library of the cysteine-proteinase inhibitor, cystatin A, was constructed in which variants with the four N-terminal amino acids randomly mutated were expressed on the surface of filamenteous phage. Screening of this library for binding to papain gave predominantly variants with a glycine residue in position 4. This finding is in agreement with previous conclusions that glycine in this position is essential for tight binding of cystatin A to cysteine proteinases by allowing optimal interaction of the N-terminal region of the inhibitor with the enzyme. In contrast, the first three residues of the variants obtained by the screening were more variable. Two variants were identified with similar affinities for papain as the wild-type inhibitor, but with these residues, Val-Phe-Thr- or Ile-Leu-Leu, differing appreciably from those of the wild-type, Met-Ile-Pro. Other sequences of the N-terminal region, presumably mainly hydrophobic, can thus substitute for the wild-type sequence and contribute similar energy to the inhibitor-proteinase interaction. The two variants binding tightly to papain differed in their affinity for cathepsin B, demonstrating that cystatin variants with increased selectivity for a particular target cysteine proteinase can be obtained by phage-display technology.  (+info)

Structure, alternative splicing and chromosomal localization of the cystatin-related epididymal spermatogenic gene. (4/642)

The cystatin superfamily of cysteine protease inhibitors consists of three major families, including the stefins, cystatins and kininogens. However, the recent identification of several genes that possess sequence similarity with the cystatins but have different gene or protein structures indicates that several new cystatin families or subgroups of families might exist. We previously identified the cystatin-related epididymal spermatogenic (Cres) gene, which is related to the family 2 cystatins but exhibits highly tissue-specific expression in the reproductive tract. In the studies presented here, an analysis of gene structure as well as chromosomal mapping studies suggest that the Cres gene might represent a new subgroup within the family 2 cystatins. Although the Cres gene possesses an additional exon encoding 5' untranslated sequences, its coding exons are similar in size to the three coding exons of the cystatin family 2 genes, and the Cres exon/intron splice junctions occur in identical locations as in the cystatin C gene. Furthermore, chromosomal mapping studies show that the Cres gene co-segregates with the cystatin C gene on mouse chromosome 2. Similar to the cystatin family 2 proteins, the Cres protein possesses the type A and B disulphide loops that are necessary for cystatin folding. Interestingly, Cres protein also possesses half of a type C disulphide loop. Although probably related to the cystatin genes, the Cres gene is distinct in that its promoter contains consensus motifs typical of regulated genes. Finally, reverse transcriptase-mediated PCR studies and the identification of new Cres cDNA clones indicate that the Cres mRNA is alternatively spliced, resulting in two Cres mRNAs that might be involved in the regulation of Cres function.  (+info)

Immunolocalization of CRES (Cystatin-related epididymal spermatogenic) protein in the acrosomes of mouse spermatozoa. (5/642)

The CRES (cystatin-related epididymal spermatogenic) protein is a member of the cystatin superfamily of cysteine protease inhibitors and exhibits highly restricted expression in the reproductive tract. We have previously shown that CRES protein is present in elongating spermatids in the testis and is synthesized and secreted by the proximal caput epididymal epithelium. The presence of CRES protein in developing germ cells and in the luminal fluid surrounding maturing spermatozoa prompted us to examine whether CRES protein is associated with spermatozoa. In the studies presented, indirect immunofluorescence, immunogold electron microscopy, and Western blot analysis demonstrated that CRES protein is localized in sperm acrosomes and is released during the acrosome reaction. Interestingly, while the 19- and 14-kDa CRES proteins were present in testicular and proximal caput epididymal spermatozoa, the 14-kDa CRES protein was the predominant form present in mid-caput to cauda epididymal spermatozoa. Furthermore, following the ionophore-induced acrosome reaction, CRES protein localization was similar to that of proacrosin/acrosin in that it was detected in the soluble fraction as well as associated with the acrosome-reacted spermatozoa. The presence of CRES protein in the sperm acrosome, a site of high hydrolytic and proteolytic activity, suggests that CRES may play a role in the regulation of intraacrosomal protein processing or may be involved in fertilization.  (+info)

The affinity and kinetics of inhibition of cysteine proteinases by intact recombinant bovine cystatin C. (6/642)

Recent studies have shown that the bovine cysteine proteinase inhibitor, cystatin C, is synthesized as a preprotein containing a 118-residue mature protein. However, the forms of the inhibitor isolated previously from bovine tissues had shorter N-terminal regions than expected from these results, and also lower affinity for proteinases than human cystatin C. In this work, we report the properties of recombinant, full-length bovine cystatin C having a complete N-terminal region. The general characteristics of this form of the inhibitor, as reflected by the isoelectric point, the far-ultraviolet circular dichroism spectrum, the thermal stability and the changes of tryptophan fluorescence on interaction with papain, resembled those of human cystatin C. The affinity and kinetics of inhibition of papain and cathepsins B, H and L by the bovine inhibitor were also comparable with those of the human inhibitor, although certain differences were apparent. Notably, the affinity of bovine cystatin C for cathepsin H was somewhat weaker than that of human cystatin C, and bovine cystatin C bound to cathepsin L with about a four-fold higher association rate constant than the human inhibitor. This rate constant is comparable with the highest values reported previously for cystatin-cysteine proteinase reactions. The full-length, recombinant bovine cystatin C bound appreciably more tightly to proteinases than the shorter form characterized previously. Digestion of the recombinant inhibitor with neutrophil elastase resulted in forms with truncated N-terminal regions and appreciably decreased affinity for papain, consistent with the forms of bovine cystatin C isolated previously having arisen by proteolytic cleavage of a mature, full-length inhibitor.  (+info)

Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. (7/642)

We have investigated the inhibition of the recently identified family C13 cysteine peptidase, pig legumain, by human cystatin C. The cystatin was seen to inhibit enzyme activity by stoichiometric 1:1 binding in competition with substrate. The Ki value for the interaction was 0.20 nM, i.e. cystatin C had an affinity for legumain similar to that for the papain-like family C1 cysteine peptidase, cathepsin B. However, cystatin C variants with alterations in the N-terminal region and the "second hairpin loop" that rendered the cystatin inactive against cathepsin B, still inhibited legumain with Ki values 0.2-0.3 nM. Complexes between cystatin C and papain inhibited legumain activity against benzoyl-Asn-NHPhNO2 as efficiently as did cystatin C alone. Conversely, cystatin C inhibited papain activity against benzoyl-Arg-NHPhNO2 whether or not the cystatin had been incubated with legumain, strongly indicating that the cystatin inhibited the two enzymes with non-overlapping sites. A ternary complex between legumain, cystatin C, and papain was demonstrated by gel filtration supported by immunoblotting. Screening of a panel of cystatin superfamily members showed that type 1 inhibitors (cystatins A and B) and low Mr kininogen (type 3) did not inhibit pig legumain. Of human type 2 cystatins, cystatin D was non-inhibitory, whereas cystatin E/M and cystatin F displayed strong (Ki 0.0016 nM) and relatively weak (Ki 10 nM) affinity for legumain, respectively. Sequence alignments and molecular modeling led to the suggestion that a loop located on the opposite side to the papain-binding surface, between the alpha-helix and the first strand of the main beta-pleated sheet of the cystatin structure, could be involved in legumain binding. This was corroborated by analysis of a cystatin C variant with substitution of the Asn39 residue in this loop (N39K-cystatin C); this variant showed a slight reduction in affinity for cathepsin B (Ki 1.5 nM) but >>5,000-fold lower affinity for legumain (Ki >>1,000 nM) than wild-type cystatin C.  (+info)

Cathepsin L is capable of truncating cystatin C of 11 N-terminal amino acids. (8/642)

Cystatin C with the 11 N-terminal amino acids truncated shows a much lower affinity for cysteine proteinases than the intact inhibitor. Such truncation of cystatin C is recorded after action of glycyl endopeptidase and cathepsin L. Incubation of cystatin C with papain, cathepsin B or cathepsin H led to no changes in the cystatin C molecule. Isoelectric focusing of the cathepsin L and cystatin C mixture showed the formation of two new bands. One of them appeared whether E-64 or PMSF was added or not, evidently representing a cystatin C/cathepsin L complex. The other band is the truncated cystatin C molecule. N-terminal sequencing after separation by HPLC showed that cystatin C is cleaved by cathepsin L at the Gly11-Gly12 bond. The action of cathepsin L on cystatin C may be explained by the cleavage of the scissile bond in an inappropriate complex.  (+info)