In the cystathionine beta-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. (41/429)

The cystathionine beta-synthase knockout mouse provides a unique opportunity to study biochemical consequences of a defective cystathionine beta-synthase enzyme. The present study was undertaken to assess the effect of elevated plasma total homocysteine caused by cystathionine beta-synthase deficiency on one-carbon metabolism in 10 homozygous mutant mice and 10 age- and sex-matched wild-type mice. Plasma total homocysteine levels, S-adenosylmethionine and S-adenosylhomocysteine concentrations in liver, kidney and brain were measured by HPLC. Tissue DNA methylation status was measured by in vitro DNA methyl acceptance. Plasma total homocysteine concentration in food-deprived homozygous mutant mice (271.1 +/- 61.5 micro mol/L) was markedly higher than in wild-type mice (7.4 +/- 2.9 micro mol/L) (P < 0.001). In liver only, S-adenosylmethionine concentrations were higher in the homozygous mutant mice (35.6 +/- 5.9 nmol/g) than in wild type mice (19.1 +/- 6.1 nmol/g) (P < 0.001) and tended to be lower in kidney (P = 0.07). In contrast, S-adenosylhomocysteine concentrations were significantly higher in homozygous mutant mice compared with wild-type mice in all tissues studied. Genomic DNA methylation status in homozygous mutant compared with wild-type mice was lower in liver (P = 0.037) and tended to be lower in kidney (P = 0.077) but did not differ in brain (P = 0.46). The results of this study are consistent with the predicted role of cystathionine beta-synthase in the regulation of plasma total homocysteine levels and tissue S-adenosylhomocysteine levels. However, the fact that the absence of the enzyme had differential effects on S-adenosylmethionine concentrations and DNA methylation status in different tissues suggests that regulation of biological methylation is a complex tissue-specific phenomenon.  (+info)

Hormonal regulation of cystathionine beta-synthase expression in liver. (42/429)

Homocysteine metabolism is altered in diabetic patients. Cystathionine beta-synthase (CBS), a key enzyme involved in the transsulfuration pathway, which irreversibly converts homocysteine to cysteine, catalyzes the condensation of serine and homocysteine to cystathionine. Studies in streptozotocin-induced diabetic rats have shown that CBS enzyme activity is elevated in the liver but not in the kidney, and this effect is reversed by insulin treatment. To determine whether these effects resulted from alterations at the level of gene transcription, CBS mRNA was measured in diabetic and insulin-treated diabetic rats. CBS mRNA levels were found to be markedly higher in streptozotocin-induced diabetic rat livers; these were reduced by insulin administration. In H4IIE cells, a rat hepatoma cell culture model, glucocorticoids increased the cellular levels of CBS enzyme protein and CBS mRNA; insulin inhibited this stimulatory effect. Treatment with insulin also decreased CBS levels in HepG2 cells, a human hepatoma cell line. Nuclear run-on experiments in the rat cells confirmed that stimulation of CBS gene expression by glucocorticoids and the inhibition by insulin occurred at the transcriptional level. Transient transfections of HepG2 cells with a CBS-1b promoter luciferase reporter construct showed that the promoter activity was decreased by 70% after insulin treatment. These results show that insulin has a direct role in regulating homocysteine metabolism. Altered insulin levels in diseases such as diabetes may influence homocysteine metabolism by regulating the hepatic transsulfuration pathway.  (+info)

Effect of hyperhomocysteinemia on protein C activation and activity. (43/429)

Hyperhomocysteinemia has been proposed to inhibit the protein C anticoagulant system through 2 mechanisms: decreased generation of activated protein C (APC) by thrombin, and resistance to APC caused by decreased inactivation of factor Va (FVa). We tested the hypotheses that generation of APC by thrombin is impaired in hyperhomocysteinemia in monkeys and that hyperhomocysteinemia produces resistance to APC in monkeys, mice, and humans. In a randomized crossover study, cynomolgus monkeys were fed either a control diet or a hyperhomocysteinemic diet for 4 weeks. Plasma total homocysteine (tHcy) was approximately 2-fold higher when monkeys were on the hyperhomocysteinemic diet than when they were on the control diet (9.8 +/- 2.0 microM versus 5.6 +/- 1.0 microM; P <.05). After infusion of human thrombin (25 microg/kg of body weight), the peak level of plasma APC was 136 +/- 16 U/mL in monkeys fed the control diet and 127 +/- 13 U/mL in monkeys fed the hyperhomocysteinemic diet (P >.05). The activated partial thromboplastin time was prolonged to a similar extent by infusion of thrombin in monkeys fed the control diet and in those fed the hyperhomocysteinemic diet. The sensitivity of plasma FV to human APC was identical in monkeys on control diet and those on hyperhomocysteinemic diet. We also did not detect resistance of plasma FV to APC in hyperhomocysteinemic mice deficient in cystathionine beta-synthase (plasma tHcy, 93 +/- 16 microM) or in human volunteers with acute hyperhomocysteinemia (plasma tHcy, 45 +/- 6 microM). Our findings indicate that activation of protein C by thrombin and inactivation of plasma FVa by APC are not impaired during moderate hyperhomocysteinemia in vivo.  (+info)

An indirect response model of homocysteine suppression by betaine: optimising the dosage regimen of betaine in homocystinuria. (44/429)

AIMS: To investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of betaine in the treatment of classical homocystinuria due to cystathionine beta-synthase (CbetaS) deficiency with a view to optimizing the dosage regimen. METHODS: Betaine was given as a single oral dose of 100 mg kg(-1) to six patients (age range 6-17 years) who normally received betaine but whose treatment had been suspended for 1 week prior to the study. Plasma betaine and total homocysteine concentrations were measured by high performance liquid chromatography (h.p.l.c.) at frequent intervals over 24 h. The best-fit PK model was determined using the PK-PD program Win-Nonlin and the concentration-time-effect data analysed by an indirect PD model. Using the PK and PD parameters, simulations were carried out with the aim of optimizing betaine dosage. RESULTS: Betaine PK was described by both mono- and bi-exponential disposition functions with first order absorption and a lag time. The correlation coefficient between betaine oral clearance and body weight was 0.6. Mean betaine clearance was higher in males than in females (P=0.03). PK-PD simulation indicated minimal benefit from exceeding a twice-daily dosing schedule and a 150 mg kg(-1) day(-1) dosage for betaine. CONCLUSIONS: PK-PD modelling allows recommendations for optimal dosage of betaine in the treatment of homocystinuria, that have the potential for improved patient compliance and both therapeutic and pharmacoeconomic benefit.  (+info)

A novel enhancing mechanism for hydrogen sulfide-producing activity of cystathionine beta-synthase. (45/429)

H2S is produced from cysteine by cystathionine beta-synthase (CBS) in the brain and functions as a neuromodulator. Although the production of H2S is regulated by Ca2+ and calmodulin in response to neuronal excitation, little is known about the molecular mechanism for the regulation in CBS activity. Here we show that four cysteine residues of CBS are involved in the regulation of its activity in the presence of Ca2+ and calmodulin. Sodium nitroprusside (SNP), a modifying agent for cysteine residues, enhances CBS activity, whereas N-ethylmaleimide, an alkylating agent for cysteine residues, completely abolished the effect of SNP. Site-directed mutagenesis of the 13 cysteine residues of CBS identified four cysteine residues that are involved in the regulation of CBS activity by SNP, and two of the four residues are involved in the regulation of the basal CBS activity. The enhancement of CBS activity by SNP is independent of nitric oxide production. In the presence of Staphylococcus aureus alpha-hemolysin, which permeabilizes the cell membrane, exogenously applied SNP enhances the activity of CBS in intact cells. The present study demonstrates a novel mechanism for the regulation of CBS activity and provides a possible therapeutic application of SNP for the diseases in which CBS activity is deficient.  (+info)

Regulation of 3' splice site selection in the 844ins68 polymorphism of the cystathionine Beta -synthase gene. (46/429)

844ins68 is a frequent polymorphism of the cystathionine beta-synthase gene (CBS) that consists of a 68-bp insertion duplicating the 3' splice site of intron 7 and the 5'-end of exon 8. The presence of two identical 3' splice sites spaced by 68 bp should lead to either a selection of the proximal site or to at least two alternatively spliced CBS mRNA variants. Instead, an accurate selection of the distal 3' splice site is observed in the 844ins68 carriers. The duplication has generated a gene re-arrangement at the 3' splice site where two GGGG runs have been brought close to each other. Using a minigene system, we have investigated the effect this peculiar configuration might have on the selection of the 3' splice site of intron 7 in the CBS gene. Minimal disruption of the G runs resulted in a dramatic shift toward the proximal 3' splice site selection with inclusion of the 68-bp insertion and a consequent change of the reading frame. The insertional event created this peculiar configuration of two G repeats close to each other that subsequently acquired the ability to strongly bind heterogeneous nuclear ribonucleoprotein (hnRNP) H1, a specific trans-acting factor. The interaction of hnRNP H1 with G runs within the 844ins68 context might interfere with the recruitment of splicing factors to the proximal 3' splice site thus favoring the selection of the distal 3' splice site. Our results therefore suggest the possibility that the insertion was an evolutionary event that allowed the rescue of the wild-type sequence, so preserving protein function.  (+info)

Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. (47/429)

The DNA microarray technology enables the identification of the large number of genes involved in the complex deregulation of cell homeostasis taking place in cancer. Using Affymetrix microarrays, we have compared the gene expression profiles of highly purified malignant plasma cells from nine patients with multiple myeloma (MM) and eight myeloma cell lines to those of highly purified nonmalignant plasma cells (eight samples) obtained by in vitro differentiation of peripheral blood B cells. Two unsupervised clustering algorithms classified these 25 samples into two distinct clusters: a malignant plasma cell cluster and a normal plasma cell cluster. Two hundred and fifty genes were significantly up-regulated and 159 down-regulated in malignant plasma samples compared to normal plasma samples. For some of these genes, an overexpression or downregulation of the encoded protein was confirmed (cyclin D1, c-myc, BMI-1, cystatin c, SPARC, RB). Two genes overexpressed in myeloma cells (ABL and cystathionine beta synthase) code for enzymes that could be a therapeutic target with specific drugs. These data provide a new insight into the understanding of myeloma disease and prefigure that the development of DNA microarray could help to develop an 'a la carte' treatment in cancer disease.  (+info)

Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. (48/429)

Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation. Deletion of the 70 N-terminal residues resulted in a heme-free protein retaining 20% of wild type activity. Additional deletion of 151 C-terminal residues from this mutant resulted in an inactive enzyme. Expression of this double-deletion mutant as a glutathione S-transferase fusion protein generated catalytically active protein (15% of wild type activity) that was unaffected by subsequent removal of the fusion partner. The function of the N-terminal region appears to be primarily steric in nature and involved in the correct folding of the enzyme. The C-terminal region of human cystathionine beta-synthase contains two hydrophobic motifs designated "CBS domains." Partial deletion of the most C-terminal of these domains decreased activity and caused enzyme aggregation and instability. Removal of both of these domains resulted in stable constitutively activated enzyme. Deletion of as few as 8 C-terminal residues increased enzyme activity and abolished any further activation by S-adenosylmethionine indicating that the autoinhibitory role of the C-terminal region is not exclusively a function of the CBS domains.  (+info)