Small artery remodeling depends on tissue-type transglutaminase. (25/130)

Remodeling of small arteries is essential in the long-term regulation of blood pressure and blood flow to specific organs or tissues. A large part of the change in vessel diameter may occur through non-growth-related reorganization of vessel wall components. The hypothesis was tested that tissue-type transglutaminase (tTG), a cross-linking enzyme, contributes to the inward remodeling of small arteries. The in vivo inward remodeling of rat mesenteric arteries, induced by low blood flow, was attenuated by inhibition of tTG. Rat skeletal muscle arteries expressed tTG, as identified by Western blot and immunostaining. In vitro, activation of these arteries with endothelin-1 resulted in inward remodeling, which was blocked by tTG inhibitors. Small arteries obtained from rats and pigs both showed inward remodeling after exposure to exogenous transglutaminase, which was inhibited by addition of a nitric oxide donor. Enhanced expression of tTG, induced by retinoic acid, increased inward remodeling of porcine coronary arteries kept in organ culture for 3 days. The activity of tTG was dependent on pressure. Inhibition of tTG reversed remodeling, causing a substantial increase in vessel diameter. In a collagen gel contraction assay, tTG determined the compaction of collagen by smooth muscle cells. Collectively, these data show that small artery remodeling associated with chronic vasoconstriction depends on tissue-type transglutaminase. This mechanism may reveal a novel therapeutic target for pathologies associated with inward remodeling of the resistance arteries.  (+info)

Different inhibition characteristics of intracellular transglutaminase activity by cystamine and cysteamine. (26/130)

The treatment of cystamine, a transglutaminase(TGase) inhibitor, has beneficial effects in several diseases including CAG-expansion disorders and cataract. We compared the inhibition characteristics of cystamine with those of cysteamine, a reduced form of cystamine expect-ed to be present inside cells. Cystamine is a more potent inhibitor for TGase than cysteamine with different kinetics pattern in a non-reducing condition. By contrast, under reducing conditions, the inhibitory effect of cystamine was comparable with that of cysteamine. How-ever, cystamine inhibited intracellular TGase activity more strongly than cysteamine despite of cytoplasmic reducing environment, suggest-ing that cystamine itself inhibits in situ TGase activity by forming mixed disulfides.  (+info)

Poly(ethylene oxide)-b-poly(N-isopropylacrylamide) nanoparticles with cross-linked cores as drug carriers. (27/130)

Micelle-like nanoparticles that could be used as drug-delivery carriers were developed. The unique feature of these nanoparticles was that the core of poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PEO-b-PNIPAAm) micelle was lightly cross-linked with a biodegradable cross-linker, N,N-bis(acryloyl)cystamine (BAC). The nanoparticles were characterized by dynamic light scattering and fluorescence measurements. When the BAC content ranged from 0.75 wt% to 0.2 wt% of the mass of NIPAAm, the diameters of the nanoparticles were less than 150 nm. The anti-cancer drug doxorubicin (Dox) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used as fluorescent probes to study the hydrophobicity of the cores of the nanoparticles; the results showed that the cores of the nanoparticles were hydrophobic enough to sequester Dox and DPH. The nanoparticles with 0.5 wt% BAC stored at room temperature were stable up to 2 weeks, even at dilute concentrations. The degradation of BAC by reducing agent beta-mercaptoethanol was investigated, and the nanoparticles were not detectable 14 days after adding beta-mercaptoethanol.  (+info)

Phenoxybenzamine and benextramine, but not 4-diphenylacetoxy-N-[2-chloroethyl]piperidine hydrochloride, display irreversible noncompetitive antagonism at G protein-coupled receptors. (28/130)

Many irreversible antagonists have been shown to inactivate G protein-coupled receptors (GPCRs) and used to study agonists and spare receptors. Presumably, they bind to primary (agonist) binding sites on the GPCR, although noncompetitive mechanisms of antagonism have been demonstrated but not thoroughly investigated. We studied noncompetitive antagonism by phenoxybenzamine and benextramine at alpha(2A)-adrenoceptors in stably transfected Chinese hamster ovary cells, benextramine and 4-diphenylacetoxy-N-[2-chloroethyl]piperidine hydrochloride (4-DAMP mustard) at endogenous muscarinic acetylcholine (mACh) receptors in human neuroblastoma SH-SY5Y cells, and benextramine at serotonin 5-HT(2A) receptors in stably transfected SH-SY5Y cells. Primary binding sites were protected by reversible competitive antagonists during pretreatment with irreversible antagonists. We conducted appropriate radioligand binding assays by measuring remaining primary binding sites and agonist affinity, functional assays to evaluate agonist-induced responses, and constitutive guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS)-Galpha(o) binding assays to determine remaining G protein activity. Phenoxybenzamine (100 microM; 20 min) and benextramine (10 or 100 microM; 20 min) at alpha(2A)-adrenoceptors, but not 4-DAMP mustard (100 nM; 120 min) at mACh receptors, displayed irreversible noncompetitive antagonism in addition to their known irreversible competitive antagonism. Although agonist binding affinity is not influenced, signal transduction is modulated in a G protein-dependent manner via allotopic interactions. Benextramine noncompetitively inhibits agonist-induced responses at three different GPCR types (alpha(2A), mACh, and 5-HT(2A) receptors) that signal via three families of G proteins (G(i/o), G(s), and G(q/11)). We conclude that, where irreversible antagonists are utilized to study drug-receptor interaction mechanisms, the presence of significant irreversible noncompetitive antagonism may influence the interpretation of results under the experimental conditions used.  (+info)

A novel small molecule CFTR inhibitor attenuates HCO3- secretion and duodenal ulcer formation in rats. (29/130)

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO(3)(-)) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO(3)(-)] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTR(inh)-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTR(inh)-172 pretreatment 1 h before cysteamine. Superfusion of CFTR(inh)-172 (0.1-10 microM) over the duodenal mucosa had no effect on basal DBS but at 10 microM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTR(inh)-172, although basal DBS was increased at 24 h. CFTR(inh)-172 treatment had no effect on gastric acid or HCO(3)(-) secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTR(inh)-172-pretreated rats. CFTR(inh)-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO(3)(-) may be an important protective mechanism for duodenal epithelial cells.  (+info)

Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. (30/130)

There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin-induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy.  (+info)

Brugia malayi and Acanthocheilonema viteae: antifilarial activity of transglutaminase inhibitors in vitro. (31/130)

The possible involvement of transglutaminase-catalyzed reactions in survival of adult worms, microfilariae (mf), and infective larvae of the filarial parasite Brugia malayi was studied in vitro by using the specific pseudosubstrate monodansylcadaverine (MDC) and the active-site inhibitors cystamine or iodoacetamide. These inhibitors significantly inhibited parasite mobility in a dose-dependent manner. This inhibition was associated with irreversible biochemical lesions followed by filarial death. A structurally related, inactive analog of MDC, dimethyldansylcadaverine, did not affect the mobility or survival of the parasites. Adult worms failed to release mf when they were incubated in the presence of MDC or cystamine, and this inhibitory effect on mf release was concentration dependent. Similar embryostatic and macrofilaricidal effects of MDC were observed in Acanthocheilonema viteae adult worms. These studies suggest that transglutaminase-catalyzed reactions may play an important role in the growth, development, and survival of filarial parasites.  (+info)

Osteopontin promotes pathologic mineralization in articular cartilage. (32/130)

Calcium pyrophosphate dihydrate (CPPD) crystals are commonly found in osteoarthritic joint tissues, where they predict severe disease. Unlike other types of calcium phosphate crystals, CPPD crystals form almost exclusively in the pericellular matrix of damaged articular cartilage, suggesting a key role for the extracellular matrix milieu in their development. Osteopontin is a matricellular protein found in increased quantities in the pericellular matrix of osteoarthritic cartilage. Osteopontin modulates the formation of calcium-containing crystals in many settings. We show here that osteopontin stimulates ATP-induced CPPD crystal formation by chondrocytes in vitro. This effect is augmented by osteopontin's incorporation into extracellular matrix by transglutaminase enzymes, is only modestly affected by its phosphorylation state, and is inhibited by integrin blockers. Surprisingly, osteopontin stimulates transglutaminase activity in cultured chondrocytes in a dose-responsive manner. As elevated levels of transglutaminase activity promote extracellular matrix changes that permit CPPD crystal formation, this is one possible mechanism of action. We demonstrate the presence of osteopontin in the pericellular matrix of chondrocytes adjacent to CPPD deposits and near active transglutaminases. Thus, osteopontin may play an important role in facilitating CPPD crystal formation in articular cartilage.  (+info)