Slow dorsal-ventral rhythm generator in the lamprey spinal cord. (41/268)

In the isolated lamprey spinal cord, a very slow rhythm (0.03-0.11 Hz), superimposed on fast N-methyl-D-aspartate (NMDA)-induced locomotor activity (0.26-2.98 Hz), could be induced by a blockade of GABA(A) or glycine receptors or by administration of (1 s, 3 s)-l-aminocyclopentane-1,3-dicarboxylic acid a metabotropic glutamate receptor agonist. Ventral root branches supplying dorsal and ventral myotomes were exposed bilaterally to study the motor pattern in detail. The slow rhythm was expressed in two main forms: 1) a dorsal-ventral reciprocal pattern was the most common (18 of 24 preparations), in which bilateral dorsal branches were synchronous and alternated with the ventral branches, in two additional cases a diagonal dorsal-ventral reciprocal pattern with alternation between the left (or right) dorsal and the right (or left) ventral branches was observed; 2) synchronous bursting in all branches was encountered in four cases. In contrast, the fast locomotor rhythm occurred always in a left-right reciprocal pattern. Thus when the slow rhythm appeared in a dorsal-ventral reciprocal pattern, fast rhythms would simultaneously display left-right alternation. A longitudinal midline section of the spinal cord during ongoing slow bursting abolished the reciprocal pattern between ipsilateral dorsal and ventral branches but a synchronous burst activity could still remain. The fast swimming rhythm did not recover after the midline section. These results suggest that in addition to the network generating the swimming rhythm in the lamprey spinal cord, there is also a network providing slow reciprocal alternation between dorsal and ventral parts of the myotome. During steering, a selective activation of dorsal and ventral myotomes is required and the neural network generating the slow rhythm may represent activity in the spinal machinery used for steering.  (+info)

cAMP-dependent presynaptic regulation of spontaneous glycinergic IPSCs in mechanically dissociated rat spinal cord neurons. (42/268)

Spontaneous miniature glycinergic inhibitory postsynaptic currents (mIPSCs) in mechanically dissociated rat sacral dorsal commissural nucleus (SDCN) neurons attached with intact glycinergic presynaptic nerve terminals and evoked IPSCs (eIPSCs) in the slice preparation were investigated using nystatin-perforated patch and conventional whole cell recording modes under the voltage-clamp conditions. Trans-ACPD (tACPD) reversibly reduced the mIPSC frequency without affecting the mean amplitude. The effect was mimicked by a specific metabotropic glutamate receptor (mGluR) II subtype agonist, (2S, 1'S, 2'S)-2-(carboxycyclo propyl) glycine (L-CCG-I), and a specific mGluRIII subtype agonist, 2-amino-4-phosphonobutyrate (L-AP4). These inhibitory effects on mIPSC frequency were blocked by the specific antagonists for mGluRII, alpha-methyl-1-(2S, 1'S, 2'S)-2-(carboxycyclo propyl) glycine and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine. In the slice preparation, eIPSC amplitude and mIPSC frequency were decreased reversibly by L-CCG-I (10(-6) M) and L-AP4 (10(-6) M). In K(+)-free or K(+)-free external solution with Ba(2+) and Cs(+), Ca(2+)-free or Cd(2+) external solution, the inhibitory effect of tACPD on mIPSC frequency was unaltered. Forskolin and 8-Br-cAMP significantly increased presynaptic glycine release, and prevented the inhibitory action of tACPD on mIPSC frequency. Sp-cAMP, however, did not prevent the inhibitory action of tACPD on mIPSC frequency. It was concluded that the activation of mGluRs inhibits glycine release by reducing the action of cAMP/PKA pathway.  (+info)

Task-dependent role for dorsal striatum metabotropic glutamate receptors in memory. (43/268)

The effect of post-training intradorsal striatal infusion of metabotropic glutamate receptor (mGluR) drugs on memory consolidation processes in an inhibitory avoidance (IA) task and visible/hidden platform water maze tasks was examined. In the IA task, adult male Long-Evans rats received post-training intracaudate infusions of the broad spectrum mGluR antagonist alpha-methyl-4-carboxyphenylglycine (MCPG; 1.0, 2.0 mM/0.5 microL), the group I/II mGluR agonist 1-aminocyclopentane-1,3-carboxylic acid (ACPD; 0.5 or 1.0 microM/0.5 microL), or saline immediately following footshock training, and retention was tested 24 h later. In the visible- and hidden-platform water maze tasks, rats received post-training intracaudate infusions of ACPD (1.0 microM), MCPG (2.0 mM), or saline immediately following an eight-trial training session, followed by a retention test 24 h later. In the IA task, post-training infusion of ACPD (0.5 and 1.0 microM) or MCPG (1.0 and 2.0 mM) impaired retention. In the IA and visible-platform water maze tasks, post-training infusion of ACPD (1.0 microM), or MCPG (2.0 mM) impaired retention. In contrast, neither drug affected retention when administered post-training in the hidden-platform task, consistent with the hypothesized role of the dorsal striatum in stimulus-response habit formation. When intradorsal striatal injections were delayed 2 h post-training in the visible-platform water maze task, neither drug affected retention, indicating a time-dependent effect of the immediate post-training injections on memory consolidation. It is hypothesized that MCPG impaired memory via a blockade of postsynaptic dorsal striatal mGluR's, while the impairing effect of ACPD may have been caused by an influence of this agonist on presynaptic "autoreceptor" striatal mGluR populations.  (+info)

The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. (44/268)

Muscarinic acetylcholine receptors (mAChR) in the central nervous system are involved in learning and memory, epileptic seizures, and processing the amyloid precursor protein. The M(1) receptor is the predominant mAChR subtype in the cortex and hippocampus. Although the five mAChR fall into two broad functional groups, all five subtypes, when expressed in recombinant systems, can activate the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway has been implicated in learning and memory, amyloid protein processing, and neuronal plasticity. We used M(1) knock-out mice to determine the role of this receptor subtype in signal transduction in the mouse forebrain. In primary cortical cultures from mice lacking the M(1) mAChR, agonist-stimulated phosphoinositide hydrolysis was reduced by more than 60% compared with cultures from wild type mice. Although muscarinic agonists induced robust activation of MAPK in cortical cultures from wild type mice, mAChR-mediated activation of MAPK was virtually absent in cultures from M(1)-deficient mice. These results indicate that the M(1) mAChR is the major subtype that mediates activation of phospholipase C and MAPK in mouse forebrain.  (+info)

Stimulation of Na-K-2Cl cotransporter in neurons by activation of Non-NMDA ionotropic receptor and group-I mGluRs. (45/268)

In a previous study, we found that Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons was stimulated by activation of the ionotropic N-methyl-D-aspartate (NMDA) glutamate receptor in a Ca(2+)-dependent manner. In this report, we investigated whether the Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons is stimulated by non-NMDA glutamate receptor-mediated signaling pathways. Expression of the Na(+)-K(+)-2Cl(-) cotransporter and metabotropic glutamate receptors (mGluR1 and 5) was detected in cortical neurons via immunoblotting and immunofluorescence staining. Significant stimulation of cotransporter activity was observed in the presence of both trans-(+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD) (10 microM), a metabotropic glutamate receptor (mGluR) agonist, and (RS)-3,5-dihydroxyphenylglycine (DHPG) (20 microM), a selective group-I mGluR agonist. Both trans-ACPD and DHPG-mediated effects on the cotransporter were eradicated by bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM, a Ca(2+) chelator. In addition, DHPG-induced stimulation of the cotransporter activity was inhibited in the presence of mGluRs antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) (1 mM) and also with selective mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (100 microM). A DHPG-induced rise in intracellular Ca(2+) in cortical neurons was detected with Fura-2. Moreover, DHPG-mediated stimulation of the cotransporter was abolished by inhibition of Ca(2+)/CaM kinase II. Interestingly, the cotransporter activity was increased by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These results suggest that the Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons is stimulated by group-I mGluR- and AMPA-mediated signal transduction pathways. The effects are dependent on a rise of intracellular Ca(2+).  (+info)

Activation of metabotropic glutamate receptor 1 accelerates NMDA receptor trafficking. (46/268)

Regulation of neuronal NMDA receptors (NMDARs) by group I metabotropic glutamate receptors (mGluRs) is known to play a critical role in synaptic transmission. The molecular mechanisms underlying mGluR1-mediated potentiation of NMDARs are as yet unclear. The present study shows that in Xenopus oocytes expressing recombinant receptors, activation of mGluR1 potentiates NMDA channel activity by recruitment of new channels to the plasma membrane via regulated exocytosis. Activation of mGluR1alpha induced (1) an increase in channel number times channel open probability, with no change in mean open time, unitary conductance, or reversal potential; (2) an increase in charge transfer in the presence of NMDA and the open channel blocker MK-801, indicating an increased number of functional NMDARs in the cell membrane; and (3) increased NR1 surface expression, as indicated by cell surface Western blots and immunofluorescence. Botulinum neurotoxin A or expression of a dominant negative mutant of synaptosomal associated protein of 25 kDa molelcular mass (SNAP-25) greatly reduced mGluR1alpha-mediated potentiation, indicating that receptor trafficking occurs via a SNAP-25-mediated form of soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor-dependent exocytosis. Because group I mGluRs are localized to the perisynaptic region in juxtaposition to synaptic NMDARs at glutamatergic synapses in the hippocampus, mGluR-mediated insertion of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.  (+info)

Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. (47/268)

IP(3) signaling in Purkinje cells is involved in the regulation of cell functions including LTD. We have used a GFP-tagged pleckstrin homology domain to visualize IP(3) dynamics in Purkinje cells. Surprisingly, IP(3) production was observed in response not only to mGluR activation, but also to AMPA receptor activation in Purkinje cells in culture. AMPA-induced IP(3) production was mediated by depolarization-induced Ca(2+) influx because it was mimicked by depolarization and was blocked by inhibition of the P-type Ca(2+) channel. Furthermore, trains of complex spikes, elicited by climbing fiber stimulation (1 Hz), induced IP(3) production in Purkinje cells in cerebellar slices. These results revealed a novel IP(3) signaling pathway in Purkinje cells that can be elicited by synaptic inputs from climbing fibers.  (+info)

Retrograde modulation of transmitter release by postsynaptic subtype 1 metabotropic glutamate receptors in the rat cerebellum. (48/268)

1. The aim of the study was to elucidate the mechanisms underlying the depressant effect of the group I/II metabotropic glutamate receptor (mGluR) agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) on parallel fibre (PF) to Purkinje cell (PC) synaptic transmission. Experiments were performed in rat cerebellar slices using the whole-cell patch-clamp technique and fluorometric measurements of presynaptic calcium variation 2. Analysis of short-term plasticity, fluctuation of EPSC amplitude and responses of PCs to exogenous glutamate showed that depression caused by 1S,3R-ACPD is presynaptic. 3. The effects of 1S,3R-ACPD were blocked and reproduced by group I mGluR antagonists and agonists, respectively. 4. These effects remained unchanged in mGluR5 knock-out mice and disappeared in mGluR1 knock-out mice. 5. 1S,3R-ACPD increased calcium concentration in PFs. This effect was abolished by AMPA/kainate (but not NMDA) receptor antagonists and mimicked by focally applied agonists of these receptors. Thus, it is not directly due to mGluRs but to presynaptic AMPA/kainate receptors indirectly activated by 1S,3R-ACPD. 6. Frequencies of spontaneous and evoked unitary EPSCs recorded in PCs were respectively increased and decreased by mGluR1 agonists. Similar results were obtained when mGluR1s were activated by tetanic stimulation of PFs. 7. Injecting 30 mM BAPTA into PCs blocked the effects of 1S,3R-ACPD on unitary EPSCs. 8. In conclusion, 1S,3R-ACPD reduces evoked release of glutamate from PFs. This effect is triggered by postsynaptic mGluR1s and thus implies that a retrograde messenger, probably glutamate, opens presynaptic AMPA/kainate receptors and consequently increases spontaneous release of glutamate from PF terminals and decreases evoked synaptic transmission.  (+info)