Analgesic and anti-inflammatory activity of stereoisomers of carane derivatives in rodent test. (33/124)

Our previously conducted pharmacological investigations led us to discovery of the strong local anesthetic activity of the compound KP-23RS. The following studies revealed that its R- and S-diasteroisomers had different activity in the local anesthetic, anti-aggregating, anti-arrhythmic and spasmolytic tests. Also the influence of KP-23RS and its diastereoisomers on the cyclic adenosine monophosphate (AMP) generating system was described. In the present study, anti-inflammatory and analgesic effects of these compounds were investigated in hind paw edema test, Randall's analgesia test and hot-plate test. Also the spasmolytic activity and the influence on the stomach mucous membrane were examined. All of these compounds had an anti-inflammatory and analgesic activity in hot-plate test and in Randall's test. Moreover, compound KP-23R showed spasmolytic activity. None of the investigated compounds induced damage of the mucous membrane of the rat stomach.  (+info)

Inhibition of putrescine aminopropyltransferase influences rat liver regeneration. (34/124)

A close relationship between rat liver regeneration and the concentration ratio of spermidine to spermine (spd:spm) was demonstrated by the oral administration of trans-4-methylcyclohexylamine (MCHA), a specific inhibitor of putrescine aminopropyltransferase. A decrease in recovery rate of remnant liver with MCHA, as a percentage index of remnant liver weight to body weight, correlated well with a decrease of the spd:spm value, with a correlation coefficient of 0.952 for the remnant livers on day 3 after partial hepatectomy. The decrease in recovery rate could be explained by a prolonged cell cycle based on the data of the proliferating cell nuclear antigen labelling index and mitotic cell index in both livers of day 2 and day 3 after partial hepatectomy. The results presented here will give a new aspect in the field of polyamine regulation to control cell growth in vivo.  (+info)

Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. (35/124)

Hyperforin (Hyp), a polyphenol-derivative of St. John's wort (Hypericum perforatum), has emerged as key player not only in the antidepressant activity of the plant but also as an inhibitor of bacteria lymphocyte and tumor cell proliferation, and matrix proteinases. We tested whether as well as inhibiting leukocyte elastase (LE) activity, Hyp might be effective in containing both polymorphonuclear neutrophil (PMN) leukocyte recruitment and unfavorable eventual tissue responses. The results show that, without affecting in vitro human PMN viability and chemokine-receptor expression, Hyp (as stable dicyclohexylammonium salt) was able to inhibit in a dose-dependent manner their chemotaxis and chemoinvasion (IC50=1 microM for both); this effect was associated with a reduced expression of the adhesion molecule CD11b by formyl-Met-Leu-Phe-stimulated neutrophils and block of LE-triggered activation of the gelatinase matrix metalloproteinase-9. PMN-triggered angiogenesis is also blocked by both local injection and daily i.p. administration of the Hyp salt in an interleukin-8-induced murine model. Furthermore, i.p. treatment with Hyp reduces acute PMN recruitment and enhances resolution in a pulmonary bleomycin-induced inflammation model, significantly reducing consequent fibrosis. These results indicate that Hyp is a powerful anti-inflammatory compound with therapeutic potential, and they elucidate mechanistic keys.  (+info)

Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules. (36/124)

The cyclohexane-1,2-diamine-based bisbinaphthyl macrocycles (S)-/(R)-5 and their cyclic and acyclic analogues are synthesized. The interactions of these compounds with various chiral acids are studied. Compounds (S)-/(R)-5 exhibit highly enantioselective fluorescent responses and high fluorescent sensitivity toward alpha-hydroxycarboxylic acids and N-protected amino acids. Among these interactions, (S)-mandelic acid (10(-3) M) led to over 20-fold fluorescence enhancement of (S)-5 (1.0 x 10(-5) M in benzene/0.05% DME) at the monomer emission, and (S)-hexahydromandelic acid (10(-3) M) led to over 80-fold fluorescence enhancement. These results demonstrate that (S)-5 is useful as an enantioselective fluorescent sensor for the recognition of the chiral acids. On the basis of the study of the structures of (S)-5 and the previously reported 1,2-diphenylethylenediamine-based bisbinaphthyl macrocycle (S)-4, the large fluorescence enhancement of (S)-5 with a chirality-matched alpha-hydroxycarboxylic acid is attributed to the formation of a structurally rigidified host-guest complex and the further interaction of this complex with the acid to suppress the photoinduced electron-transfer fluorescent quenching caused by the nitrogens in (S)-5.  (+info)

Patched1 regulates hedgehog signaling at the primary cilium. (37/124)

Primary cilia are essential for transduction of the Hedgehog (Hh) signal in mammals. We investigated the role of primary cilia in regulation of Patched1 (Ptc1), the receptor for Sonic Hedgehog (Shh). Ptc1 localized to cilia and inhibited Smoothened (Smo) by preventing its accumulation within cilia. When Shh bound to Ptc1, Ptc1 left the cilia, leading to accumulation of Smo and activation of signaling. Thus, primary cilia sense Shh and transduce signals that play critical roles in development, carcinogenesis, and stem cell function.  (+info)

Mechanism of proton transfer in the 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. (38/124)

3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH with a concomitant releasing of protons to bulk solvent. To probe the proton transfer during the enzyme reaction, we used mutagenesis, chemical rescue, and kinetic isotope effects to investigate the release of protons. The kinetic isotope effects of (D)V and (D(2)O)V for wild-type enzyme are 1 and 2.1 at pL 10.4 (where L represents H, (2)H), respectively, and suggest a rate-limiting step in the intramolecular proton transfer. Substitution of alanine for Lys(159) changes the rate-limiting step to the hydride transfer, evidenced by an equal deuterium isotope effect of 1.8 on V(max) and V/K(androsterone) and no solvent kinetic isotope effect at saturating 3-(cyclohexylamino)propanesulfonic acid (CAPS). However, a value of 4.4 on V(max) is observed at 10 mm CAPS at pL 10.4, indicating a rate-limiting proton transfer. The rate of the proton transfer is blocked in the K159A and K159M mutants but can be rescued using exogenous proton acceptors, such as buffers, small primary amines, and azide. The Bronsted relationship between the log(V/K(d)(-base)Et) of the external amine (corrected for molecular size effects) and pK(a) is linear for the K159A mutant-catalyzed reaction at pH 10.4 (beta = 0.85 +/- 0.09) at 5 mm CAPS. These results show that proton transfer to the external base with a late transition state occurred in a rate-limiting step. Furthermore, a proton inventory on V/Et is bowl-shaped for both the wild-type and K159A mutant enzymes and indicates a two-proton transfer in the transition state from Tyr(155) to Lys(159) via 2'-OH of ribose.  (+info)

Influence of ligand structure on Fe(II) spin-state and redox rate in cytotoxic tripodal chelators. (39/124)

The Fe coordination chemistry of several tripodal aminopyridyl hexadentate chelators is reported along with cytotoxicity toward cultured Hela cells. The chelators are based on cis, cis-1,3,5-triaminocyclohexane (tach) with three pendant -CH2-2-pyridyl groups where 2-pyridyl is R-substituted thus are named tach-x-Rpyr where x=3, R=Me; x=3, R=MeO; x=6; R=Me. The structures of [Fe(tach-3-Mepyr)]Cl2 and [Fe(tach-3-MeOpyr)](FeCl4) are reported and their metric parameters indicate strongly bound, low-spin Fe(II). The structure of [Fe(tach-6-Mepyr)](ClO4)2 implies steric effects of 6-Me groups push donor Npy's away so one Fe-Npy bond is substantially longer at 2.380(3)A vs. 2.228(3)A for the others, and Fe(II) in the high-spin-state. Accordingly, anions X(-)=Cl or SCN afford [Fe(tach-6-Mepyr)(X)]+ from [Fe(tach-6-Mepyr)]2+ (UV-vis spectroscopy). Consistent with a biological cytotoxicity involving Fe chelation, chelators of low-spin Fe(II) have greater toxicity in the order [IC50(72 h) is in parentheses then the spin-state SS=H (high) or L (low)]: tachpyr=tach-3-Mepyr (6 microM, SS=L) greater, similar tach-3-MeOpyr (12microM, SS=L)>>tach-6-Mepyr (>200 microM, SS=H). Iron-mediated oxidative dehydrogenation with O2 oxidant removes hydrogens from coordinated nitrogen and the adjacent CH2, converting aqueous [Fe(tach-3-Rpyr)]2+ (R=H, Me and MeO) into a mix of low-spin imino- and aminopyridyl-armed complexes, but [Fe(tach-6-Mepyr)]2+ does not react (NMR and ESI-MS spectroscopies). The difference of IC(50) for chelators at different time points (delta IC50=[IC50(24h)-IC50(72 h)]) is used to compare rate of cytotoxic action to qualitative rate of oxidation in the Fe-bound chelator, giving the order, from rapid to slow oxidation and cell killing of: [Fe(tach-3-Mepyr)]2+ (delta IC50=5 microM)>[Fe(tachpyr)]2+ (delta IC50=16 microM)>[Fe(tach-3-MeOpyr)]2+ (delta IC50=118 microM). Thus, those chelators whose Fe(II) complexes undergo rapid oxidation kill cells faster, and those that bind Fe(II) as low-spin are far more cytotoxic.  (+info)

Electrospray ionization and time-of-flight mass spectrometric method for simultaneous determination of spermidine and spermine. (40/124)

A sensitive method for the determination of polyamines in mammalian cells was described using electrospray ionization and time-of-flight mass spectrometer. This method was 50-fold more sensitive than the previous method using ionspray ionization and quadrupole mass spectrometer. The method employed the partial purification and derivatization of polyamines, but allowed a measurement of multiple samples which contained picomol amounts of polyamines. Time required for data acquisition of one sample was approximately 2 min. The method was successfully applied for the determination of reduced spermidine and spermine contents in cultured cells under the inhibition of aminopropyltransferases. In addition, a new proper internal standard was proposed for the tracer experiment using (15)N-labeled polyamines.  (+info)