MCP-1 is selectively expressed in the late phase by cytokine-stimulated human neutrophils: TNF-alpha plays a role in maximal MCP-1 mRNA expression. (65/5972)

Culture supernatants of phytohemagglutinin (PHA)-stimulated human peripheral blood mononuclear cells (PHA-sup) induced monocyte chemoattractant protein-1 (MCP-1) mRNA expression in human neutrophils. MCP-1 mRNA was first detected by Northern analysis at 8 h, and the peak level was detected at 16 h and sustained until 72 h. Cycloheximide and genistein, but not pertussis toxin, inhibited the expression of MCP-1 mRNA. Recombinant tumor necrosis factor alpha (TNF-alpha) induced a low level MCP-1 mRNA accumulation in neutrophils, and addition of anti-TNF-alpha IgG blocked 30-70% of MCP-1 mRNA expression induced with PHA-sup. PHA-sup-stimulated PMN synthesized and secreted 3.1+/-1.3 ng/5 x 10(6) PMN MCP-1 within the first 24 h. Hybridization of 32P-labeled cDNA preparations to an array of human cytokine cDNAs further indicated that MCP-1 mRNA was selectively up-regulated in the late phase after stimulation with the PHA-sup.  (+info)

Genetic analysis of radiation-sensitive mutations in the slime mould Dictyostelium discoideum. (66/5972)

The linkage of two mutations leading to increased sensitivity to ultraviolet light and 60Co gamma rays was determined in the slime mould Dictyostelium discoideum using a genetic analysis based on the parasexual cycle. Diploids were selected from a mixture of radiation-sensitive, temperature-resistant and radiation-resistant, temperature-sensitive haploids on the basis of simultaneous radiation and temperature resistance. Analysis of drug-resistant haploid segregants of the heterozygous diploids indicated that one of the radiation-sensitive mutations, radA20, was linked to linkage group I whereas the other, radB13, was linked to the recently defined linkage group VI.  (+info)

Tri-iodothyronine increases insulin-like growth factor binding protein-2 expression in cultured hepatocytes from hypothyroid rats. (67/5972)

Previous evidence suggests the existence of a thyroid hormone-IGF axis in the liver and changes in hepatic insulin-like growth factor binding protein (IGFBP) expression in rats with altered thyroid status have been previously reported. The aim of this study was to check if the higher IGFBP-2 mRNA levels observed in liver of hypothyroid rats could be due to a direct effect of thyroid hormone on the IGFBP-2 gene. In our experiments, cultured hepatocytes isolated from normal and hypothyroid adult rats were used. Northern blot analysis revealed barely detectable IGFBP-2 mRNA in normal rat hepatocytes, but easily detectable signal in hypothyroid rat cells. Therefore, the effect of tri-iodothyronine (T3) was investigated using cultured hepatocytes from hypothyroid rats as an in vitro model. The IGFBP-2 message was increased in a dose-dependent manner in hepatocytes cultured for 12-24 h in the presence of T3. A similar increase occurred in accumulation of IGFBP-2 in the culture medium, as measured by RIA. The effect of T3 on IGFBP-2 transcript levels appeared to consist of enhanced gene transcription and was independent of ongoing protein synthesis, but it was completely abolished by the incubation of hepatocytes with insulin. The latter result confirmed the dominant role of insulin in regulating IGFBP-2 expression by cultured hepatocytes. In vivo experiments confirmed an increase in hepatic IGFBP-2 mRNA and serum IGFBP-2 levels in hypothyroid rats and demonstrated, in addition, a significant increase in these measures in T3-treated rats. Taken together, our in vitro and in vivo results support a role for a thyroid hormone-IGF axis in the liver and suggest that other factors, such as insulin, interact in vivo with thryoid hormone in regulating hepatic IGFBP-2 expression.  (+info)

Troglitazone, an antidiabetic agent, inhibits cholesterol biosynthesis through a mechanism independent of peroxisome proliferator-activated receptor-gamma. (68/5972)

Troglitazone is an antidiabetic agent of the thiazolidinedione family. It is generally believed that thiazolidinediones exert their insulin-sensitizing activity through activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the steroid nuclear receptor superfamily. In the present study, we examined the effect of troglitazone on cholesterol biosynthesis in cultured Chinese hamster ovary (CHO) cells. Troglitazone inhibited biosynthesis of cholesterol, but not that of total sterols, in a dose-dependent manner, with a half-maximal concentration (IC50) value of 8 micromol/l. At 20 micromol/l, troglitazone inhibited cholesterol biosynthesis by more than 80%, resulting in the accumulation of lanosterol and several other sterol products. This inhibitory effect observed in CHO cells was also reproduced in HepG2, L6, and 3T3-L1 cells, suggesting that there is a common pathway for this troglitazone action. One hour after removal of troglitazone from the culture medium, disappearance of the accumulated sterols was accompanied by restored cholesterol synthesis, indicating that those accumulated sterols are precursors of cholesterol. PPAR-gamma reporter assays showed that PPAR-gamma activation by troglitazone was completely blocked by actinomycin D and cycloheximide. In contrast, the inhibition of cholesterol synthesis by troglitazone remained unchanged in the presence of the above compounds, suggesting that this inhibition is mechanistically distinct from the transcriptional regulation by PPAR-gamma. Like troglitazone, two other thiazolidinediones, ciglitazone and englitazone, exhibited similar inhibitory effect on cholesterol synthesis; however, other known PPAR-gamma ligands such as BRL49653, pioglitazone, and 15-deoxy-delta(12,14)-prostaglandin J2 showed only weak or no inhibition. The dissociation of PPAR-gamma binding ability from the potency for inhibition of cholesterol synthesis further supports the conclusion that inhibition of cholesterol biosynthesis by troglitazone is unlikely to be mediated by PPAR-gamma.  (+info)

Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. (69/5972)

Leptin, the ob gene product, is produced by adipocytes, and it acts to decrease caloric intake and increase energy expenditure. To better understand the molecular mechanisms of hormone-regulated leptin synthesis and secretion, we assessed the ability of insulin and dexamethasone to acutely modulate ob gene expression and leptin secretion in rat adipocytes. Incubation of rat adipocytes with 100 nmol/l insulin for 2 h had no effect on ob mRNA levels, but it stimulated a twofold increase in leptin secretion. Dexamethasone (100 nmol/l) stimulated both a two- to fourfold increase in ob mRNA and a twofold increase in leptin secretion. Consonant with a posttranscriptional and transcriptional regulatory mechanism for insulin- and dexamethasone-stimulated leptin secretion, respectively, actinomycin D blocked dexamethasone-stimulated leptin secretion but did not affect insulin-stimulated leptin secretion. Cycloheximide treatment did not significantly affect ob mRNA accumulation, but it reduced total secreted leptin. Interestingly, however, insulin was still able to stimulate a twofold increase in leptin secretion. These data suggest that insulin, but not dexamethasone, is able to stimulate leptin secretion from a preexisting intracellular pool, although de novo protein synthesis is required for the full insulin-stimulated effect. Signaling pathways involved in leptin synthesis/secretion were also evaluated. The phosphatidylinositol 3-kinase inhibitor LY294002, the Map/Erk kinase inhibitor PD98059, and the immunosuppressant rapamycin had no effect on basal levels of leptin secretion. However, all three inhibitors markedly decreased both insulin- and dexamethasone-stimulated leptin secretion. These findings suggest a complex set of signaling pathways involved in mediating insulin- and dexamethasone-stimulated leptin synthesis and secretion.  (+info)

Betulinic acid-induced apoptosis in glioma cells: A sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. (70/5972)

Betulinic acid (BA), a pentacyclic triterpene, is an experimental cytotoxic agent for malignant melanoma. Here, we show that BA triggers apoptosis in five human glioma cell lines. BA-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell cycle arrest. BA-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase. Interactions of death ligand/receptor pairs of the CD95/CD95 ligand family do not mediate BA-induced caspase activation. BA enhances the levels of BAX and BCL-2 proteins but does not alter the levels of BCL-xS or BCL-xL. Ectopic expression of BCL-2 prevents BA-induced caspase activation, DNA fragmentation, and cell death. Furthermore, BA induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that BA toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases.  (+info)

The structural gene for alpha-mannosidase-1 in Dictyostellium discoideum. (71/5972)

We have isolated 4 independent mutations affecting alpha-mannosidase-1, a developmentally regulated activity in Dictyrostelium discoideum. Three of these result in a thermolabile alpha-mannosidase-1 activity. One mutation also affects the substrate affinity (Km) of the activity. In diploids these mutations show a gene dosage effect and are all alleles. The structural gene for alpha-mannosidase-1, as defined by these mutations, defines a new linkage group, linkage group VI. alpha-mammosidase 1 is probably a homopolymer with subunits of 54,000 daltons. We have also mapped two temperature-sensitive-for-growth mutations onto two previously defined linkage groups.  (+info)

Characterization of the translation-dependent step during iron-regulated decay of transferrin receptor mRNA. (72/5972)

Iron regulates the stability of the mRNA encoding the transferrin receptor (TfR). When iron is scarce, iron regulatory proteins (IRPs) stabilize TfR mRNA by binding to the 3'-untranslated region. High levels of iron induce degradation of TfR mRNA; the translation inhibitor cycloheximide prevents this. To distinguish between cotranslational mRNA decay and a trans effect of translation inhibitors, we designed a reporter system exploiting the properties of the selectable marker gene thymidine kinase (TK). The 3'-untranslated region of human transferrin receptor, which contains all elements necessary for iron-dependent regulation of mRNA stability, was fused to the TK cDNA. In stably transfected mouse fibroblasts, the expression of the reporter gene was perfectly regulated by iron. Introduction of stop codons in the TK coding sequence or insertion of stable stem-loop structures in the leader sequence did not affect on the iron-dependent regulation of the reporter mRNA. This implies that global translation inhibitors stabilize TfR mRNA in trans. Cycloheximide prevented the destabilization of TfR mRNA only in the presence of active IRPs. Inhibition of IRP inactivation by cycloheximide or by the specific proteasome inhibitor MG132 correlated with the stabilization of TfR mRNA. These observations suggest that inhibition of translation by cycloheximide interferes with the rate-limiting step of iron-induced TfR mRNA decay in a trans-acting mechanism by blocking IRP inactivation.  (+info)