Prevention and therapy of cancer by dietary monoterpenes. (1/379)

Monoterpenes are nonnutritive dietary components found in the essential oils of citrus fruits and other plants. A number of these dietary monoterpenes have antitumor activity. For example, d-limonene, which comprises >90% of orange peel oil, has chemopreventive activity against rodent mammary, skin, liver, lung and forestomach cancers. Similarly, other dietary monoterpenes have chemopreventive activity against rat mammary, lung and forestomach cancers when fed during the initiation phase. In addition, perillyl alcohol has promotion phase chemopreventive activity against rat liver cancer, and geraniol has in vivo antitumor activity against murine leukemia cells. Perillyl alcohol and d-limonene also have chemotherapeutic activity against rodent mammary and pancreatic tumors. As a result, their cancer chemotherapeutic activities are under evaluation in Phase I clinical trials. Several mechanisms of action may account for the antitumor activities of monoterpenes. The blocking chemopreventive effects of limonene and other monoterpenes during the initiation phase of mammary carcinogenesis are likely due to the induction of Phase II carcinogen-metabolizing enzymes, resulting in carcinogen detoxification. The post-initiation phase, tumor suppressive chemopreventive activity of monoterpenes may be due to the induction of apoptosis and/or to inhibition of the post-translational isoprenylation of cell growth-regulating proteins. Chemotherapy of chemically induced mammary tumors with monoterpenes results in tumor redifferentiation concomitant with increased expression of the mannose-6-phosphate/insulin-like growth factor II receptor and transforming growth factor beta1. Thus, monoterpenes would appear to act through multiple mechanisms in the chemoprevention and chemotherapy of cancer.  (+info)

Biosynthesis of 3-acetyldeoxynivalenol and sambucinol. Identification of the two oxygenation steps after trichodiene. (2/379)

The first two oxygenation steps post-trichodiene in the biosyntheses of the trichothecenes 3-acetyldeoxynivalenol and sambucinol were investigated. The plausible intermediates 2-hydroxytrichodiene (2alpha- and 2beta-) and 12,13-epoxytrichodiene and the dioxygenated compounds 12,13-epoxy-9,10-trichoene-2-ol (2alpha- and 2beta-) were prepared specifically labeled with stable isotopes. They were then fed separately and/or together to Fusarium culmorum cultures, and the derived trichothecenes were isolated, purified, and analyzed. The stable isotopes enable easy localization of the labels in the products by 2H NMR, 13C NMR, and mass spectrometry. We found that 2alpha-hydroxytrichodiene is the first oxygenated step in the biosynthesis of both 3-acetyldeoxynivalenol and sambucinol. The stereoisomer 2beta-hydroxytrichodiene and 12,13-epoxytrichodiene are not biosynthetic intermediates and have not been isolated as metabolites. We also demonstrated that the dioxygenated 12, 13-epoxy-9,10-trichoene-2alpha-ol is a biosynthetic precursor to trichothecenes as had been suggested in a preliminary work. Its stereoisomer was not found in the pathway. A further confirmation of our results was the isolation of both oxygenated trichodiene derivatives 2alpha-hydroxytrichodiene and 12,13-epoxy-9, 10-trichoene-2alpha-ol as natural metabolites in F. culmorum cultures.  (+info)

Adenosylcobalamin-mediated methyl transfer by toluate cis-dihydrodiol dehydrogenase of the TOL plasmid pWW0. (3/379)

We identified and characterized a methyl transfer activity of the toluate cis-dihydrodiol (4-methyl-3,5-cyclohexadiene-cis-1, 2-diol-1-carboxylic acid) dehydrogenase of the TOL plasmid pWW0 towards toluene cis-dihydrodiol (3-methyl-4,5-cyclohexadiene-cis-1, 2-diol). When the purified enzyme from the recombinant Escherichia coli containing the xylL gene was incubated with toluene cis-dihydrodiol in the presence of NAD+, the end products differed depending on the presence of adenosylcobalamin (coenzyme B12). The enzyme yielded catechol in the presence of adenosylcobalamin, while it gave 3-methylcatechol in the absence of the cofactor. Adenosylcobalamin was transformed to methylcobalamin as a result of the enzyme reaction, which indicates that the methyl group of the substrate was transferred to adenosylcobalamin. Other derivatives of the cobalamin such as aquo (hydroxy)- and cyanocobalamin did not mediate the methyl transfer reaction. The dehydrogenation and methyl transfer reactions were assumed to occur concomitantly, and the methyl transfer reaction seemed to depend on the dehydrogenation. To our knowledge, the enzyme is the first dehydrogenase that shows a methyl transfer activity as well.  (+info)

Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. (4/379)

Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  (+info)

Olfactory discrimination ability of human subjects for ten pairs of enantiomers. (5/379)

We tested the ability of human subjects to distinguish between enantiomers, i.e. odorants which are identical except for chirality. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with 10 enantiomeric odor pairs and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects were only able to significantly discriminate the optical isomers of alpha-pinene, carvone and limonene, whereas they failed to distinguish between the (+)- and (-)-forms of menthol, fenchone, rose oxide, camphor, alpha-terpineol, beta-citronellol and 2-butanol; (ii) marked individual differences in discrimination performance, ranging from subjects who were able to significantly discriminate between 6 of the 10 odor pairs to subjects who failed to do so with 9 of the 10 tasks; (iii) that with none of the 10 odor pairs were the antipodes reported to differ significantly in subjective intensity when presented at equal concentrations; and (iv) that error rates were quite stable and did not differ significantly between sessions, and thus, we observed a lack of learning or training effects. Additional tests of the degree of trigeminality and threshold measurements of the optical isomers of alpha-pinene, carvone and limonene suggest that the discriminability of these three enantiomeric odor pairs is indeed due to differences in odor quality. These findings support the assumption that enantioselective molecular odor receptors may only exist for some but not all volatile enantiomers and thus that chiral recognition of odorants may not be a general phenomenon but is restricted to some substances.  (+info)

Odor response properties of rat olfactory receptor neurons. (6/379)

Molecular biology studies of olfaction have identified a multigene family of molecular receptors that are likely to be involved in odor transduction mechanisms. However, because previous functional data on peripheral coding were mainly collected from inferior vertebrates, it has been difficult to document the degree of specificity of odor interaction mechanisms. As a matter of fact, studies of the functional expression of olfactory receptors have not demonstrated the low or high specificity of olfactory receptors. In this study, the selectivity of olfactory receptor neurons was investigated in the rat at the cellular level under physiological conditions by unitary extracellular recordings. Individual olfactory receptor neurons were broadly responsive to qualitatively distinct odor compounds. We conclude that peripheral coding is based on activated arrays of olfactory receptor cells with overlapping tuning profiles.  (+info)

Biosynthesis of bitter acids in hops. A (13)C-NMR and (2)H-NMR study on the building blocks of humulone. (7/379)

The biosynthesis of humulone, an antibacterial bitter acid from hops, was studied by isotope-incorporation experiments using (13)C-labelled glucose or (2)H(2)O. (13)C enrichments, (2)H enrichments and (13)C(13)C coupling patterns identify isovaleryl-CoA, malonyl-CoA and dimethylallyl pyrophosphate as precursors for humulone. Dimethylallyl pyrophosphate, which serves as a building block for the bitter acid, is generated via the deoxyxylulose pathway of terpenoid biosynthesis. The data confirm that a symmetrical intermediate is involved in humulone formation.  (+info)

Induction by adozelesin and hydroxyurea of origin recognition complex-dependent DNA damage and DNA replication checkpoints in Saccharomyces cerevisiae. (8/379)

DNA damaging agents induce a conserved intra-S-phase checkpoint that inhibits DNA replication in eukaryotic cells. To better understand this checkpoint and its role in determining the efficacy of antitumor drugs that damage DNA, we examined the effects of adozelesin, a DNA-alkylating antitumor agent that has a profound inhibitory effect on initiation of DNA replication in mammals, on the replication of Saccharomyces cerevisiae chromosomes. Adozelesin inhibited initiation of S. cerevisiae DNA replication by inducing an intra-S-phase DNA damage checkpoint. This inhibitory effect was abrogated in orc2-1 cells containing a temperature-sensitive mutation in a component of the origin recognition complex (ORC) that also causes a defect in initiation. The orc2-1 mutation also caused a defect in a checkpoint that regulates the activation of origins in late S phase in cells treated with hydroxyurea. Defects in both initiation and checkpoint regulation in the orc2-1 strain were suppressed by deletion of a gene encoding a putative acetyltransferase, SAS2. Adozelesin also induced a cellular response that requires a function of ORC in G(1). A similar G(1)-specific response in mammals may contribute to the cytotoxic and antitumor properties of this and other DNA-damaging drugs.  (+info)