TOR regulates the subcellular localization of Ime1, a transcriptional activator of meiotic development in budding yeast. (49/114)

The transcriptional activator Ime1 is a key regulator of meiosis and sporulation in budding yeast. Ime1 is controlled at different levels by nutrients and cell-type signals. Previously, we have proposed that G(1) cyclins would transmit nutritional signals to the Ime1 pathway by preventing the accumulation of Ime1 within the nucleus. We show here that nutritional signals regulate the subcellular localization of Ime1 through the TOR pathway. The inactivation of TOR with rapamycin promotes the nuclear accumulation and stabilization of Ime1, with consequent induction of early meiotic genes. On the contrary, the activation of TOR by glutamine induces the relocalization of Ime1 to the cytoplasm. Thus, TOR may sense optimal nitrogen- and carbon-limiting conditions to modulate Ime1 function. Besides TOR, ammonia induces an independent mechanism that prevents the accumulation of Ime1 in the nucleus. Both TOR and ammonia regulate Ime1 localization in the absence of Cdk1 activity and therefore use mechanisms different from those exerted by G(1) cyclins. Integration of independent mechanisms into a single early controlling step, such as the nuclear accumulation of Ime1, may help explain why yeast cells execute the meiotic program only when the appropriate internal and external conditions are met together.  (+info)

Borna disease virus phosphoprotein represses p53-mediated transcriptional activity by interference with HMGB1. (50/114)

Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21(waf1) expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1.  (+info)

Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin-Cdk complex to late G1. (51/114)

The G1 cyclin Cln3 is a key activator of cell-cycle entry in budding yeast. Here we show that Whi3, a negative G1 regulator of Cln3, interacts in vivo with the cyclin-dependent kinase Cdc28 and regulates its localization in the cell. Efficient interaction with Cdc28 depends on an N-terminal domain of Whi3 that is also required for cytoplasmic localization of Cdc28, and for proper regulation of G1 length and filamentous growth. On the other hand, nuclear accumulation of Cdc28 requires the nuclear localization signal of Cln3, which is also found in Whi3 complexes. Both Cln3 and Cdc28 are mainly cytoplasmic during early G1, and become nuclear in late G1. However, Whi3-deficient cells show a distinct nuclear accumulation of Cln3 and Cdc28 already in early G1. We propose that Whi3 constitutes a cytoplasmic retention device for Cln3-Cdc28 complexes, thus defining a key G1 event in yeast cells.  (+info)

Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. (52/114)

The human fungal pathogen Candida albicans switches from yeast to hyphal growth when exposed to serum or phagocytosed. However, the importance of this morphological switch for virulence remains highly controversial due to the lack of a mutant that affects hyphal morphogenesis only. Although many genes specifically expressed in hyphal cells have been identified and shown to encode virulence factors, none is required for hyphal morphogenesis. Here we report the first hypha-specific gene identified, HGC1, which is essential for hyphal morphogenesis. Deletion of HGC1 abolished hyphal growth in all laboratory conditions tested and in the kidneys of systemically infected mice with markedly reduced virulence. HGC1 expression is co-regulated with other virulence genes such as HWP1 by the cAMP/protein kinase A signaling pathway and transcriptional repressor Tup1/Nrg1. Hgc1 is a G1 cyclin-related protein and co-precipitated with the cyclin-dependent kinase (Cdk) CaCdc28. It has recently emerged that cyclin/Cdk complexes promote other forms of polarized cell growth such as tumor cell migration and neurite outgrowth. C. albicans seems to have adapted a conserved strategy to control specifically hyphal morphogenesis.  (+info)

Specific chemopreventive agents trigger proteasomal degradation of G1 cyclins: implications for combination therapy. (53/114)

PURPOSE: There is a need to identify cancer chemoprevention mechanisms. We reported previously that all-trans-retinoic acid (RA) prevented carcinogenic transformation of BEAS-2B immortalized human bronchial epithelial cells by causing G(1) arrest, permitting repair of genomic DNA damage. G(1) arrest was triggered by cyclin D1 proteolysis via ubiquitin-dependent degradation. This study investigated which chemopreventive agents activated this degradation program and whether cyclin E was also degraded. EXPERIMENTAL DESIGN: This study examined whether: (a) cyclin E protein was affected by RA treatment; (b) cyclin degradation occurred in derived BEAS-2B-R1 cells that were partially resistant to RA; and (c) other candidate chemopreventive agents caused cyclin degradation. RESULTS: RA treatment triggered degradation of cyclin E protein, and ALLN, a proteasomal inhibitor, inhibited this degradation. Induction of the retinoic acid receptor beta, growth suppression, and cyclin degradation were each inhibited in BEAS-2B-R1 cells. Transfection experiments in BEAS-2B cells indicated that RA treatment repressed expression of wild-type cyclin D1 and cyclin E, but ALLN inhibited this degradation. Mutation of threonine 286 stabilized transfected cyclin D1, and mutations of threonines 62 and 380 stabilized transfected cyclin E, despite RA treatment. Specific chemopreventive agents triggered cyclin degradation. Nonclassical retinoids (fenretinide and retinoid X receptor agonists) and a synthetic triterpenoid (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) each suppressed BEAS-2B growth and activated this degradation program. However, a vitamin D3 analog (RO-24-5531), a cyclooxygenase inhibitor (indomethacin), and a peroxisome proliferator-activated receptor gamma agonist (rosiglitazone) each suppressed BEAS-2B growth, but did not cause cyclin degradation. BEAS-2B-R1 cells remained responsive to nonclassical retinoids and to 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid. CONCLUSIONS: Specific chemopreventive agents activate cyclin proteolysis. Yet, broad resistance did not occur after acquired resistance to a single agent. This provides a therapeutic rationale for combination chemoprevention with agents activating non-cross-resistant pathways.  (+info)

Acanthamoeba induces cell-cycle arrest in host cells. (54/114)

Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.  (+info)

CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. (55/114)

A putative G1 cyclin gene, Antma;CycD1;1 (CycD1), from Antirrhinum majus is known to be expressed throughout the cell cycle in the meristem and other actively proliferating cells. To test its role in cell cycle progression, we examined the effect of CycD1 expression in the tobacco (Nicotiana tabacum) cell suspension culture BY-2. Green fluorescent protein:CycD1 is located in the nucleus throughout interphase. Using epitope-tagged CycD1, we show that it interacts in vivo with CDKA, a cyclin dependent protein kinase that acts at both the G1/S and the G2/M boundaries. We examined the effect of induced expression at different stages of the cell cycle. Expression in G0 cells accelerated entry into both S-phase and mitosis, whereas expression during S-phase accelerated entry into mitosis. Consistent with acceleration of both transitions, the CycD1-associated cyclin dependent kinase can phosphorylate both histone H1 and Rb proteins. The expression of cyclinD1 led to the early activation of total CDK activity, consistent with accelerated cell cycle progression. Continuous expression of CycD1 led to moderate increases in growth rate. Therefore, in contrast with animal D cyclins, CycD1 can promote both G0/G1/S and S/G2/M progression. This indicates that D cyclin function may have diverged between plants and animals.  (+info)

Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. (56/114)

The pocket protein family of tumor suppressors, and Rb specifically, have been implicated as controlling terminal differentiation in many tissues, including the heart. To establish the biological functions of Rb in the heart and overcome the early lethality caused by germ line deletion of Rb, we used a Cre/loxP system to create conditional, heart-specific Rb-deficient mice. Mice that are deficient in Rb exclusively in cardiac myocytes (CRbL/L) are born with the expected Mendelian distribution, and the adult mice displayed no change in heart size, myocyte cell cycle distribution, myocyte apoptosis, or mechanical function. Since both Rb and p130 are expressed in the adult myocardium, we created double-knockout mice (CRbL/L p130-/-) to determine it these proteins have a shared role in regulating cardiac myocyte cell cycle progression. Adult CRbL/L p130-/- mice demonstrated a threefold increase in the heart weight-to-body weight ratio and showed increased numbers of bromodeoxyuridine- and phosphorylated histone H3-positive nuclei, consistent with persistent myocyte cycling. Likewise, the combined deletion of Rb plus p130 up-regulated myocardial expression of Myc, E2F-1, and G1 cyclin-dependent kinase activities, synergistically. Thus, Rb and p130 have overlapping functional roles in vivo to suppress cell cycle activators, including Myc, and maintain quiescence in postnatal cardiac muscle.  (+info)