A Cdc28 mutant uncouples G1 cyclin phosphorylation and ubiquitination from G1 cyclin proteolysis. (33/114)

Proteolysis of the yeast G(1) cyclins is triggered by their Cdc28-dependent phosphorylation. Phosphorylated Cln1 and Cln2 are ubiquitinated by the SCF-Grr1 complex and then degraded by the 26 S proteasome. In this study, we identified a cak1 allele in a genetic screen for mutants that stabilize the yeast G(1) cyclins. Further characterization showed that Cln2HA was hypophosphorylated, unable to bind Cdc28, and stabilized in cak1 mutants at the restrictive temperature. Hypophosphorylation of Cln2HA could thus explain its stabilization. To test this possibility, we expressed a Cak1-independent mutant of Cdc28 (Cdc28-43244) in cak1 mutants and found that Cln2HA phosphorylation was restored, but surprisingly, the phospho-Cln2HA was stabilized. When bound to Cdc28-43244, Cln2HA was recognized and polyubiquitinated by SCF-Grr1. The Cdc28-43244 mutant thus reveals an unexpected complexity in the degradation of polyubiquitinated Cln2HA by the proteasome.  (+info)

Inactivation of wild-type p53 by a dominant negative mutant renders MCF-7 cells resistant to tubulin-binding agent cytotoxicity. (34/114)

The present study was performed to gain insight into the role of p53 on the cytotoxicity of tubulin-binding agents (TBA) on cancer cells. Drug sensitivity, cell cycle distribution and drug-induced apoptosis were compared in 2 lines derived from the mammary adenocarcinoma MCF-7: the MN-1 cell line containing wild-type p53 (wt-p53) and the MDD2 line, containing a dominant negative variant of the p53 protein (mut-p53). The MDD2 cell line was significantly more resistant to the cytotoxic effects of vinblastine and paclitaxel than the MN1 cell line. MN1 cells, but not MDD2 cells, displayed wt-p53 protein accumulation as well as p21/WAF1 and cyclin G1 induction after exposure to TBA. Both cell lines arrested at G(2)/M after drug treatment. However exposure of MN1 cells to TBA resulted in a stronger variation in mitochondrial membrane potential, associated with cleavage of PARP, and more apoptosis, as measured by annexin V expression. After exposure to vinblastine, Raf 1 kinase activity was reduced in MDD2 cells but not in MN1 cells. Addition of flavopiridol to vinblastine- and paclitaxel-treated cells reversed the MDD2-resistant phenotype by inducing G(1)cell cycle arrest and inhibiting endoreduplication. We conclude that the p53 status of cancer cells influences their sensitivity to TBA cytotoxicity. This effect is likely to involve differences in the apoptotic cascade.  (+info)

Retinoblastoma protein: combating algal bloom. (35/114)

The discovery of a homolog of the retinoblastoma protein (Rb) in a single-celled eukaryote--the alga Chlamydomonas--promises new and surprising insights into Rb's function in cell-cycle regulation.  (+info)

Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. (36/114)

PURPOSE: In a previous study, it was reported that docosahexaenoic acid (DHA) is essential to postpone apoptosis and to promote differentiation of rat retina photoreceptors in vitro. In the current study, the protective effects of GDNF on photoreceptor cells during development in vitro and its action when combined with DHA were investigated. METHODS: Rat retina neuronal cultures were incubated in a chemically defined medium, either without photoreceptor survival factors or supplemented with GDNF, DHA, or GDNF plus DHA. Evolution of survival, apoptosis, opsin expression, mitochondrial functioning, and cell proliferation were investigated at different times of development in vitro. RESULTS: Incubation with GDNF selectively increased the number of surviving photoreceptors, reduced their apoptosis, and augmented opsin expression. Proliferative cell nuclei antigen (PCNA) determination and addition of [(3)H]-thymidine or bromodeoxyuridine showed that GDNF promoted neuroblast proliferation during the first hours of development in vitro. The combined addition of GDNF and DHA enhanced opsin expression and photoreceptor survival in an additive manner. The advance of photoreceptor apoptosis in cultures without trophic factors correlated with an increased impairment in mitochondrial functionality. Addition of GDNF and DHA significantly diminished the loss of mitochondrial activity. CONCLUSIONS: These results show that GDNF stimulated the cell cycle progression, leading to neuroblast proliferation at early stages of development, and delayed the onset of apoptosis later on, improving differentiation and acting as a trophic factor for photoreceptors. The combination of GDNF with DHA had an additive effect both on photoreceptor survival and on opsin expression. Preservation of mitochondrial function may be involved in the antiapoptotic effect of both factors.  (+info)

Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. (37/114)

Eukaryotic cells commit in G1 to a new mitotic cycle or to diverse differentiation processes. Here we show that Whi3 is a negative regulator of Cln3, a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. Whi3 contains an RNA-recognition motif that specifically binds the CLN3 mRNA, with no obvious effects on Cln3 levels, and localizes the CLN3 mRNA into discrete cytoplasmic foci. This is the first indication that G1 events may be regulated by locally restricting the synthesis of a cyclin. Moreover, Whi3 is also required for restraining Cln3 function in meiosis, filamentation, and mating, thus playing a key role in cell fate determination in budding yeast.  (+info)

PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells. (38/114)

Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.  (+info)

Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma. (39/114)

To identify CpG islands differentially methylated in pancreatic adenocarcinoma, we used methylated CpG island amplification (MCA) coupled with representational difference analysis. Of 42 CpG islands identified by MCA/representational difference analysis, 7 CpG islands [methylated in carcinoma of the pancreas (MICP)] were differentially methylated in a panel of eight pancreatic cancer cell lines compared with normal pancreas. In a larger panel of 75 pancreatic adenocarcinomas, these 7 MICPs (ppENK, Cyclin G, ZBP, MICP25, 27, 36, and 38) were methylated in 93, 3, 9, 15, 48, 19, and 41% of cancers, respectively, by methylation-specific PCR but not in any of 15 normal pancreata. In pancreatic cancer cell lines, methylation of ppENK, a gene with known growth suppressive properties, was associated with transcriptional silencing that was reversible with 5-aza-2'-deoxycytidine treatment. Relationships between the methylation patterns of pancreatic adenocarcinomas and their clinicopathological features were also determined. Larger pancreatic cancers and those from older patients (P = 0.017) harbored more methylated loci than smaller tumors and those from younger patients (P = 0.017). ppENK, MICP25, and 27 were variably methylated in normal gastric, duodenal, and colonic mucosae. These data indicate that aberrant methylation of ppENK and its transcriptional repression is a common event in pancreatic carcinogenesis.  (+info)

Relationship between the function and the location of G1 cyclins in S. cerevisiae. (40/114)

The Saccharomyces cerevisiae cyclin-dependent kinase Cdc28 forms complexes with nine different cyclins to promote cell division. These nine cyclin-Cdc28 complexes have different roles, but share the same catalytic subunit; thus, it is not clear how substrate specificity is achieved. One possible mechanism is specific sub-cellular localization of specific complexes. We investigated the location of two G1 cyclins using fractionation and microscopy. In addition, we developed 'forced localization' cassettes, which direct proteins to particular locations, to test the importance of localization. Cln2 was found in both nucleus and cytoplasm. A substrate of Cln2, Sic1, was also in both compartments. Cytoplasmic Cln2 was concentrated at sites of polarized growth. Forced localization showed that some functions of Cln2 required a cytoplasmic location, while other functions required a nuclear location. In addition, one function apparently required shuttling between the two compartments. The G1 cyclin Cln3 required nuclear localization. An autonomous, nuclear localization sequence was found near the C-terminus of Cln3. Our data supports the hypothesis that Cln2 and Cln3 have distinct functions and locations, and the specificity of cyclin-dependent kinases is mediated in part by subcellular location.  (+info)