Levels and interactions of p27, cyclin D3, and CDK4 during the formation and maintenance of the corpus luteum in mice. (25/335)

The cyclin-dependent kinase (CDK) inhibitor p27, the regulator of the cell cycle, is required for proper functioning of luteinizing/luteinized cells in vivo. Since different members of the CDK family may be targeted by p27 during luteinization-associated cell cycle exit, this in vivo study further analyzed the organization of the network of cell cycle regulators that may underlie both the establishment and maintenance of the luteal phenotype. Most importantly, it shows that the luteinization process is associated with down-regulation of CDK2 and cyclin D1, and up-regulation of p27 and cyclin D3. Both p27 and cyclin D3 proteins not only accumulated during initial phases of luteinization, but they remained elevated until termination of the luteal function. Along with its accumulation, p27 lost physical contact with CDK2 and instead became associated with CDK4. In fully luteinized cells, all cyclin D3 was incorporated into complexes with p27, some complexes being p27/cyclin D3/CDK4 trimers. Despite the significant amounts of CDK4 and CDK6, only nonphosphorylated forms of retinoblastoma protein were detectable in fully luteinized cells. Together, our data indicate that while inhibition of proliferation is underlaid by the progressive loss of positive regulators of the cell cycle, including cyclins and CDK2, maintenance of the luteal phenotype is driven by up-regulated levels of p27 and cyclin D3, at least partially owing to formation of p27/cyclin D3/CDK4 trimers.  (+info)

Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. (26/335)

Progression into G(1) in B lymphocytes is regulated by cyclins D2 and D3, components of the cell cycle machinery currently believed to have overlapping and potentially redundant roles in cell cycle control. To study the specific role of cyclin D2 in B lymphocyte proliferation, we examined B cells from cyclin D2(-/-) mice and demonstrate a specific requirement for cyclin D2 in BCR- but not CD40- or lipopolysaccharide-induced proliferation. Furthermore, conventional B cell development proceeds normally in the mutant mice; however, the CD5 B cell compartment is dramatically reduced, suggesting that cyclin D2 is important in CD5 B cell development as well as antigen-dependent B cell clonal expansion.  (+info)

Stem cell factor inhibits erythroid differentiation by modulating the activity of G1-cyclin-dependent kinase complexes: a role for p27 in erythroid differentiation coupled G1 arrest. (27/335)

Terminal erythroid differentiation is accompanied by decreased expression of c-Kit and decreased proliferation of erythroid progenitor cells. Using a newly established erythroleukemia cell line HB60-5, which proliferates in response to erythropoietin (Epo) and stem cell factor (SCF) and differentiates when stimulated with Epo alone, we characterized several events associated with the cell cycle during erythroid differentiation. Forty-eight h after SCF withdrawal and Epo stimulation, there was strong inhibition of cyclin-dependent kinase (cdk) 4 and cdk6 activities, associated with an increase in the binding of p27 and p15 to cdk6. A significant increase in the binding of p27 to cyclin E- and cyclin A-associated cdk2 correlated with the inhibition of these kinases. In addition, the expression of c-Myc and its downstream transcriptional target Cdc25A were found to be down-regulated during Epo-induced terminal differentiation of HB60-5 cells. The loss of Cdc25A was associated with an increase in the phosphotyrosylation of cyclin E-associated cdk2, which may contribute to cell cycle arrest during differentiation. Although overexpression of p27 in HB60-5 cells caused G1 arrest, it did not promote terminal erythroid differentiation. Thus, the cell cycle arrest that involves p27 is part of a broader molecular program during HB60-5 erythroid differentiation. Moreover, we suggest that SCF stimulation of erythroblasts, in addition to inhibiting erythroid differentiation, activates parallel or sequential signals responsible for maintaining cyclin/cdk activity.  (+info)

Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. (28/335)

In most plants, sucrose is the major transported carbon source. Carbon source availability in the form of sucrose is likely to be a major determinant of cell division, and mechanisms must exist for sensing sugar levels and mediating appropriate control of the cell cycle. We show that sugar availability plays a major role during the G(1) phase by controlling the expression of CycD cyclins in Arabidopsis. CycD2 mRNA levels increase within 30 min of the addition of sucrose; CycD3 is induced after 4 h. This corresponds to induction of CycD2 expression early in G(1) and CycD3 expression in late G(1) near the S-phase boundary. CycD2 and CycD3 induction is independent both of progression to a specific point in the cell cycle and of protein synthesis. Protein kinase activity of CycD2- and CycD3-containing cyclin-dependent kinases is consistent with the observed regulation of their mRNA levels. CycD2 and CycD3 therefore act as direct mediators of the presence of sugar in cell cycle commitment. CycD3, but not CycD2, expression responds to hormones, for which we show that the presence of sugars is required. Finally, protein phosphatases are shown to be involved in regulating CycD2 and CycD3 induction. We propose that control of CycD2 and CycD3 by sucrose forms part of cell cycle control in response to cellular carbohydrate status.  (+info)

Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. (29/335)

Stem cell factor (SCF)/c-kit plays an important role in the regulation of hematopoiesis, melanogenesis, and spermatogenesis. In the testis, the SCF/c-kit system is believed to regulate germ cell proliferation, meiosis, and apoptosis. Studies with type A spermatogonia in vivo and in vitro have indicated that SCF induces DNA synthesis and proliferation. However, the signaling pathway for this function of SCF/c-kit has not been elucidated. We now demonstrate that SCF activates phosphoinositide 3-kinase (PI3-K) and p70 S6 kinase (p70S6K) and that rapamycin, a FRAP/mammalian target of rapamycin-dependent inhibitor of p70S6K, completely inhibited bromodeoxyuridine incorporation induced by SCF in primary cultures of spermatogonia. SCF induced cyclin D3 expression and phosphorylation of the retinoblastoma protein through a pathway that is sensitive to both wortmannin and rapamycin. Furthermore, AKT, but not protein kinase C-zeta, is used by SCF/c-kit/PI3-K to activate p70S6K. Dominant negative AKT-K179M completely abolished p70S6K phosphorylation induced by the constitutively active PI3-K catalytic subunit p110. Constitutively active v-AKT highly phosphorylated p70S6K, which was totally inhibited by rapamycin. Thus, SCF/c-kit uses a rapamycin-sensitive PI3-K/AKT/p70S6K/cyclin D3 pathway to promote spermatogonial cell proliferation.  (+info)

Glucocorticoid-mediated destabilization of cyclin D3 mRNA involves RNA-protein interactions in the 3'-untranslated region of the mRNA. (30/335)

Glucocorticoids regulate the expression of the G(1) progression factor, cyclin D3. Cyclin D3 messenger RNA (CcnD3 mRNA) stability decreases rapidly when murine T lymphoma cells are treated with the synthetic glucocorticoid dexamethasone. Basal stability of CcnD3 mRNA is regulated by sequences within the 3'-untranslated region (3'-UTR). RNA-protein interactions occurring within the CcnD3 3'-UTR have been analyzed by RNA electrophoretic mobility shift assay. Three sites of RNA-protein interaction have been mapped using this approach. These elements include three pyrimidine-rich domains of 25, 26, and 37 nucleotides. When the cyclin D3 3'-UTR was stably overexpressed, the endogenous CcnD3 mRNA was no longer regulated by dexamethasone. Likewise, overexpression of a 215-nucleotide transgene that contains the 26- and 37-nucleotide elements blocks glucocorticoid inhibition of CcnD3 mRNA expression. These observations suggest that the 215-nucleotide 3'-UTR element may act as a molecular decoy, competing for proteins that bind to the endogenous transcript and thereby attenuating glucocorticoid responsiveness. UV-cross-linking experiments showed that two proteins of approximate molecular weight 37,000 and 52,000 bind to this 3'-UTR element.  (+info)

Involvement of p27(kip1) and cyclin D3 in the regulation of cdk2 activity during skeletal muscle differentiation. (31/335)

Terminal myogenic differentiation involves an irreversible transition from a proliferative state to a post-mitotic quiescent state. We showed here that in addition to the previously reported down regulation of G(1)-related cyclin-associated kinase activities, this transition was also accompanied by an extensive reorganization of the cyclin-cdk complexes, including a dramatic shift of cdk2 from cyclin A to cyclin D3. Moreover, the inhibition of cdk activity also correlated with an increase in the expression of the p27(kip1) cdk inhibitor and in its association with the cyclin-cdk2 complexes. Since depletion of p27 substantially reduced the cdk inhibitor activity present in differentiated muscle cells, we believe that the increase in p27 expression along with the reorganization of the cyclin-cdk2 complexes may play an important role in the inhibition of cdk2 activity during the differentiation process.  (+info)

A role for nuclear phospholipase Cbeta 1 in cell cycle control. (32/335)

Phosphoinositide signaling resides in the nucleus, and among the enzymes of the cycle, phospholipase C (PLC) appears as the key element both in Saccharomyces cerevisiae and in mammalian cells. The yeast PLC pathway produces multiple inositol polyphosphates that modulate distinct nuclear processes. The mammalian PLCbeta(1), which localizes in the nucleus, is activated in insulin-like growth factor 1-mediated mitogenesis and undergoes down-regulation during murine erythroleukemia differentiation. PLCbeta(1) exists as two polypeptides of 150 and 140 kDa generated from a single gene by alternative RNA splicing, both of them containing in the COOH-terminal tail a cluster of lysine residues responsible for nuclear localization. These clues prompted us to try to establish the critical nuclear target(s) of PLCbeta(1) subtypes in the control of cell cycle progression. The results reveal that the two subtypes of PLCbeta(1) that localize in the nucleus induce cell cycle progression in Friend erythroleukemia cells. In fact when they are overexpressed in the nucleus, cyclin D3, along with its kinase (cdk4) but not cyclin E is overexpressed even though cells are serum-starved. As a consequence of this enforced expression, retinoblastoma protein is phosphorylated and E2F-1 transcription factor is activated as well. On the whole the results reveal a direct effect of nuclear PLCbeta(1) signaling in G(1) progression by means of a specific target, i.e. cyclin D3/cdk4.  (+info)