Loading...
(1/457) Detection of Kaposi's sarcoma herpesvirus DNA sequences in multiple myeloma bone marrow stromal cells.

Whether Kaposi's sarcoma herpesvirus (KSHV) is associated with multiple myeloma (MM) remains controversial. We assayed for KSHV DNA sequences in long-term bone marrow stromal cells (BMSCs) from 26 patients with MM and 4 normal donors. Polymerase chain reaction (PCR) using primers which amplify a KSHV gene sequence to yield a 233-bp fragment (KS330233 within open reading frame 26) was negative in all cases. Aliquots of these PCR products were used as templates in subsequent nested PCR, with primers that amplify a 186-bp product internal to KS330233. BMSCs from 24 of 26 (92%) patients with MM and 1 of 4 normal donors were KSHV PCR+. DNA sequence analyses showed interpatient specific mutations (2 to 3 bp). Both Southern blot and sequence analyses confirmed the specificity of PCR results. The presence of the KSHV gene sequences was further confirmed by amplifying T 1.1 (open reading frame [ORF] K7) and viral cyclin D (ORF 72), two other domains within the KSHV genome. Immunohistochemical studies of KSHV PCR+ MM BMSCs demonstrate expression of dendritic cell (DC) lineage markers (CD68, CD83, and fascin). Serological studies for the presence of KSHV lytic or latent antibodies were performed using sera from 53 MM patients, 12 normal donors, and 5 human immunodeficiency virus (HIV)/KSHV+ patients. No lytic or latent antibodies were present in sera from either MM patients or normal donors. Taken together, these findings show that KSHV DNA sequences are detectable in BMSCs from the majority of MM patients, but that serologic responses to KSHV are not present. Ongoing studies are defining whether the lack of antibody response is caused by the absence of ongoing infection, the presence of a novel viral strain associated with MM, or underlying immunodeficiency in these patients.  (+info)

(2/457) TAFII250, Egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin.

Differential display identified that gene fragment HA220 homologous to the transcriptional activator factor II 250 (TAFII250) gene, or CCG1, was increased in hypertrophied rodent heart. To determine whether TAFII250 gene expression is modified after cardiac damage, we measured TAFII250 expression in vivo in mouse hearts after injection of the cardiotoxic agent doxorubicin (DXR) and in vitro in DXR-treated isolated rat neonatal cardiomyocytes. In vivo atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), Egr-1, and TAFII250 expression increased with dose and time after a single DXR injection, but only ANF and beta-MHC expression were increased after multiple injections. After DXR treatment of neonatal cardiomyocytes we found decreased ANF, alpha-MHC, Egr-1, and TAFII250 expression. Expression of the TAFII250-regulated genes, the D-type cyclins, was increased after a single injection in adult mice and was decreased in DXR-treated cardiomyocytes. Thus expression of Erg-1, TAFII250, and the D-type cyclins is modulated after cardiotoxic damage in adult and neonatal heart.  (+info)

(3/457) Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases.

The E2F transcription factor plays a major role in cell cycle regulation, differentiation and apoptosis, but it is not clear how it is regulated by non-mitogenic signaling cascades. Here we report that two kinases involved in signal transduction have opposite effects on E2F function: the stress-induced kinase JNK1 inhibits E2F1 activity whereas the related p38 kinase reverses Rb-mediated repression of E2F1. JNK1 phosphorylates E2F1 in vitro, and co-transfection of JNK1 reduces the DNA binding activity of E2F1; treatment of cells with TNFalpha had a similar effect. Fas stimulation of Jurkat cells is known to induce p38 kinase and we find a pronounced increase in Rb phosphorylation within 30 min of Fas stimulation. Phosphorylation of Rb correlated with a dissociation of E2F and increased transcriptional activity. The inactivation of Rb by Fas was blocked by SB203580, a p38-specific inhibitor, as well as a dominant-negative p38 construct; cyclin-dependent kinase (cdk) inhibitors as well as dominant-negative cdks had no effect. These results suggest that Fas-mediated inactivation of Rb is mediated via the p38 kinase, independent of cdks. The Rb/E2F-mediated cell cycle regulatory pathway appears to be a normal target for non-mitogenic signaling cascades and could be involved in mediating the cellular effects of such signals.  (+info)

(4/457) The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts.

The widely prevailing view that the cyclin-dependent kinase inhibitors (CKIs) are solely negative regulators of cyclin-dependent kinases (CDKs) is challenged here by observations that normal up-regulation of cyclin D- CDK4 in mitogen-stimulated fibroblasts depends redundantly upon p21(Cip1) and p27(Kip1). Primary mouse embryonic fibroblasts that lack genes encoding both p21 and p27 fail to assemble detectable amounts of cyclin D-CDK complexes, express cyclin D proteins at much reduced levels, and are unable to efficiently direct cyclin D proteins to the cell nucleus. Restoration of CKI function reverses all three defects and thereby restores cyclin D activity to normal physiological levels. In the absence of both CKIs, the severe reduction in cyclin D-dependent kinase activity was well tolerated and had no overt effects on the cell cycle.  (+info)

(5/457) DNA binding protein dbpA binds Cdk5 and inhibits its activity.

Progress in the cell cycle is governed by the activity of cyclin dependent kinases (Cdks). Unlike other Cdks, the Cdk5 catalytic subunit is found mostly in differentiated neurons. Interestingly, the only known protein that activates Cdk5 (i.e. p35) is expressed solely in the brain. It has been suggested that, besides its requirement in neuronal differentiation, Cdk5 activity is induced during myogenesis. However, it is not clear how this activity is regulated in the pathway that leads proliferative cells to differentiation. In order to find if there exists any Cdk5-interacting protein, the yeast two-hybrid system was used to screen a HeLa cDNA library. We have determined that a C-terminal 172 amino acid domain of the DNA binding protein, dbpA, binds to Cdk5. Biochemical analyses reveal that this fragment (dbpA(Cdelta)) strongly inhibits p35-activated Cdk5 kinase. The protein also interacts with Cdk4 and inhibits the Cdk4/cyclin D1 enzyme. Surprisingly, dbpA(Cdelta) does not bind Cdk2 in the two-hybrid assay nor does it inhibit Cdk2 activated by cyclin A. It could be that dbpA's ability to inhibit Cdk5 and Cdk4 reflects an apparent cross-talk between distinct signal transduction pathways controlled by dbpA on the one hand and Cdk5 or Cdk4 on the other.  (+info)

(6/457) A cyclin D-Cdk4 activity required for G2 phase cell cycle progression is inhibited in ultraviolet radiation-induced G2 phase delay.

Cyclin D-Cdk4 complexes have a demonstrated role in G1 phase, regulating the function of the retinoblastoma susceptibility gene product (Rb). Previously, we have shown that following treatment with low doses of UV radiation, cell lines that express wild-type p16 and Cdk4 responded with a G2 phase cell cycle delay. The UV-responsive lines contained elevated levels of p16 post-treatment, and the accumulation of p16 correlated with the G2 delay. Here we report that in UV-irradiated HeLa and A2058 cells, p16 bound Cdk4 and Cdk6 complexes with increased avidity and inhibited a cyclin D3-Cdk4 complex normally activated in late S/early G2 phase. Activation of this complex was correlated with the caffeine-induced release from the UV-induced G2 delay and a decrease in the level of p16 bound to Cdk4. Finally, overexpression of a dominant-negative mutant of Cdk4 blocked cells in G2 phase. These data indicate that the cyclin D3-Cdk4 activity is necessary for cell cycle progression through G2 phase into mitosis and that the increased binding of p16 blocks this activity and G2 phase progression after UV exposure.  (+info)

(7/457) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1.

Progression of cells through the G1 phase of the cell cycle requires cyclin D:Cdk4/6 and cyclin E:Cdk2 complexes; however, the duration and ordering of these complexes remain unclear. To address this, we synthesized a peptidyl mimetic of the Cdk4/6 inhibitor, p16INK4a that contained an NH2-terminal TAT protein transduction domain. Transduction of TAT-p16 wild-type peptides into cells resulted in the loss of active, hypophosphorylated pRb and elicited an early G1 cell cycle arrest, provided cyclin E:Cdk2 complexes were inactive. We conclude that cyclin D:Cdk4/6 activity is required for early G1 phase cell cycle progression up to, but not beyond, activation of cyclin E:Cdk2 complexes at the restriction point and is thus nonredundant with cyclin E:Cdk2 in late G1.  (+info)

(8/457) c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points.

c-myc is a cellular proto-oncogene associated with a variety of human cancers and is strongly implicated in the control of cellular proliferation, programmed cell death, and differentiation. We have previously reported the first isolation of a c-myc-null cell line. Loss of c-Myc causes a profound growth defect manifested by the lengthening of both the G1 and G2 phases of the cell cycle. To gain a clearer understanding of the role of c-Myc in cellular proliferation, we have performed a comprehensive analysis of the components that regulate cell cycle progression. The largest defect observed in c-myc-/- cells is a 12-fold reduction in the activity of cyclin D1-Cdk4 and -Cdk6 complexes during the G0-to-S transition. Downstream events, such as activation of cyclin E-Cdk2 and cyclin A-Cdk2 complexes, are delayed and reduced in magnitude. However, it is clear that c-Myc affects the cell cycle at multiple independent points, because restoration of the Cdk4 and -6 defect does not significantly increase growth rate. In exponentially cycling cells the absence of c-Myc reduces coordinately the activities of all cyclin-cyclin-dependent kinase complexes. An analysis of cyclin-dependent kinase complex regulators revealed increased expression of p27(KIP1) and decreased expression of Cdk7 in c-myc-/- cells. We propose that c-Myc functions as a crucial link in the coordinate adjustment of growth rate to environmental conditions.  (+info)