Loading...
(1/760) The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation.

The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.  (+info)

(2/760) p53 regulates a G2 checkpoint through cyclin B1.

The p53 tumor suppressor controls multiple cell cycle checkpoints regulating the mammalian response to DNA damage. To identify the mechanism by which p53 regulates G2, we have derived a human ovarian cell that undergoes p53-dependent G2 arrest at 32 degrees C. We have found that p53 prevents G2/M transition by decreasing intracellular levels of cyclin B1 protein and attenuating the activity of the cyclin B1 promoter. Cyclin B1 is the regulatory subunit of the cdc2 kinase and is a protein required for mitotic initiation. The ability of p53 to control mitotic initiation by regulating intracellular cyclin B1 levels suggests that the cyclin B-dependent G2 checkpoint has a role in preventing neoplastic transformation.  (+info)

(3/760) Activation of integrin and ceramide signalling pathways can inhibit the mitogenic effect of insulin-like growth factor I (IGF-I) in human breast cancer cell lines.

Cell counting, cell cycle analysis and Western immunoblotting were used to examine the effects of non-apoptotic doses of a ceramide analogue, C2, and a synthetic arginine-glycine-aspartic acid (RGD)-containing peptide, RGD, in MCF-7 and T47D cells to determine whether activation of these signalling pathways could alter the mitogenic potential of insulin-like growth factor I (IGF-I). IGF-I alone increased total cell number in both cell lines, associated with a rise in the percentage of cells in the S-phase of the cell cycle and a co-incident increase in cyclin A production. Treatments alone had no effects on cell number or cyclin A production relative to controls. C2 inhibited IGF-I-induced mitogenesis in both lines, whereas RGD was only effective in the T47D line. Despite inhibition of cell proliferation, IGF-I stimulation of cells in S-phase and of cyclin A levels were unaffected; however, an IGF-I-induced increase in cyclin B1 levels was inhibited by 30%. Low-dose induction of integrin and ceramide signalling pathways causes cells to be blocked in S-phase, thereby inhibiting the normal cycle of events associated with the IGF-I-induced mitotic signal. Activating these pathways may not only restrict tumour growth by induction of apoptosis but they may also directly inhibit IGF-I-induced cell proliferation.  (+info)

(4/760) Posttranslational regulation of the retinoblastoma gene family member p107 by calpain protease.

The retinoblastoma protein plays a critical role in regulating the G1/S transition. Less is known about the function and regulation of the homologous pocket protein p107. Here we present evidence for the posttranslational regulation of p107 by the Ca2+-activated protease calpain. Three negative growth regulators, the HMG-CoA reductase inhibitor lovastatin, the antimetabolite 5-fluorouracil, and the cyclic nucleotide dibutyryl cAMP were found to induce cell type-specific loss of p107 protein which was reversible by the calpain inhibitor leucyl-leucyl-norleucinal but not by the serine protease inhibitor phenylmethylsulfonylfluoride, caspase inhibitors, or lactacystin, a specific inhibitor of the 26S proteasome. Purified calpain induced Ca2+-dependent p107 degradation in cell lysates. Transient expression of the specific calpain inhibitor calpastatin blocked the loss of p107 protein in lovastatin-treated cells, and the half-life of p107 was markedly lengthened in lovastatian-treated cells stably transfected with a calpastatin expression vector versus cells transfected with vector alone. The data presented here demonstrate down-regulation of p107 protein in response to various antiproliferative signals, and implicate calpain in p107 posttranslational regulation.  (+info)

(5/760) Alteration in p53 pathway and defect in apoptosis contribute independently to cisplatin-resistance.

The accumulation of molecular genetic defects selected during the adaptation process in the development of cisplatin-resistance was studied using progressive cisplatin-resistant variants (L1210/DDP2, L1210/DDP5, L1210/DDP10) derived from a murine leukemia cell line (L1210/0). Of these cell lines, only the most resistant L1210/DDP10 was cross-resistant to etoposide and deficient in apoptosis induced by these two drugs, indicating that resistance to DNA-damaging agents correlates with a defect in apoptosis. This defect was tightly associated with the loss of a Ca2+/Mg2+-dependent nuclear endonuclease activity present in the less cisplatin-resistant cells. Evidence is presented that p53-dependent function (a) is lost not only in the apoptosis defective L1210/DDP10 cells, but also in the apoptosis susceptible L1210/DDP5 cells; (b) is unrelated to drug-induced cell cycle perturbations. These results suggest that deficiency in the p53 pathway and resistance to DNA-damaging agents due to a defect in apoptosis are independent events.  (+info)

(6/760) Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.

During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented.  (+info)

(7/760) Cyclic AMP delays G2 progression and prevents efficient accumulation of cyclin B1 proteins in mouse macrophage cells.

In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  (+info)

(8/760) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site.

cdc25C induces mitosis by activating the cdc2-cyclin B complex. The intracellular localization of cyclin B1 is regulated in a cell cycle-specific manner, and its entry into the nucleus may be required for the initiation of mitosis. To determine the cellular localization of cdc25C, monoclonal antibodies specific for cdc25C were developed and used to demonstrate that in human cells, cdc25C is retained in the cytoplasm during interphase. A deletion analysis identified a 58-amino-acid region (amino acids 201 to 258) in cdc25C that was required for the cytoplasmic localization of cdc25C. This region contained a specific binding site for 14-3-3 proteins, and mutations in cdc25C that disrupted 14-3-3 binding also disrupted the cytoplasmic localization of cdc25C during interphase. cdc25C proteins that do not contain a binding site for 14-3-3 proteins showed a pancellular localization and an increased ability to induce premature chromosome condensation. The cytoplasmic localization of cdc25C was not altered by gamma irradiation or treatment with the nuclear export inhibitor leptomycin B. These results suggest that 14-3-3 proteins may negatively regulate cdc25C function by sequestering cdc25C in the cytoplasm.  (+info)