Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. (33/318)

Most of the effects of the signaling molecule nitric oxide (NO) are mediated by cGMP, which is synthesized by soluble guanylyl cyclase and degraded by phosphodiesterases. Here we show that in platelets and aortic tissue, NO led to a biphasic response characterized by a tremendous increase in cGMP (up to 100-fold) in less than 30 s and a rapid decline, reflecting the tightly controlled balance of guanylyl cyclase and phosphodiesterase activities. Inverse to the reported increase in sensitivity caused by NO shortage, concentrating NO attenuated the cGMP response in a concentration-dependent manner. We found that guanylyl cyclase remained fully activated during the entire course of the cGMP response; thus, desensitization was not due to a switched off guanylyl cyclase. However, when intact platelets were incubated with NO and then lysed, enhanced activity of phosphodiesterase type 5 was detected in the cytosol. Furthermore, this increase in cGMP degradation is paralleled by the phosphorylation of phosphodiesterase type 5 at Ser-92. Thus, our data suggest that NO-induced desensitization of the cGMP response is caused by the phosphorylation and subsequent activity increase of phosphodiesterase type 5.  (+info)

Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. (34/318)

1. To assess the involvement of endothelial alpha(2)-adrenoceptors in the clonidine-induced vasodilatation, the mesenteric artery of Sprague Dawley rats was cannulated and perfused with Tyrode solution (2 ml min(-1)). We measured perfusion pressure, nitric oxide (NO) in the perfusate using chemiluminescence, and tissue cyclic GMP by RIA. 2. In phenylephrine-precontracted mesenteries, clonidine elicited concentration-dependent vasodilatations associated to a rise in luminal NO. One hundred nM rauwolscine or 100 microM L(omega)-nitro-L-arginine antagonized the clonidine-induced vasodilatation. Guanabenz, guanfacine, and oxymetazoline mimicked the clonidine-induced vasorelaxation. 3. In non-contracted mesenteries, 100 nM clonidine elicited a maximal rise of NO (123+/-13 pmol); associated to a peak in tissue cyclic GMP. Endothelium removal, L(omega)-nitro-L-arginine, or rauwolscine ablated the rise in NO. One hundred nM aminoclonidine, guanfacine, guanabenz, UK14,304 and oxymetazoline mimicked the clonidine-induced surge of NO. Ten microM ODQ obliterated the clonidine-induced vasorelaxation and the associated tissue cyclic GMP accumulation; 10 - 100 nM sildenafil increased tissue cyclic GMP accumulation without altering the clonidine-induced NO release. 4. alpha(2)-Adrenergic blockers antagonized the clonidine-induced rise in NO. Consistent with a preferential alpha(2D)-adrenoceptor activation, the K(B)s for yohimbine, rauwolscine, phentolamine, WB-4101, and prazosin were: 6.8, 24, 19, 165, and 1489 nM, respectively. 5. Rat pretreatment with 100 mg kg(-1) 6-hydroxydopamine reduced 95% tissue noradrenaline and 60% neuropeptide Y. In these preparations, 100 nM clonidine elicited a rise of 91.9+/-15.5 pmol NO. Perfusion with 1 microM guanethidine or 1 microM guanethidine plus 1 microM atropine did not modify the NO surge evoked by 100 nM clonidine. 6. Clonidine and congeners activate endothelial alpha(2D)-adrenoceptors coupled to the L-arginine pathway, suggesting that the antihypertensive action of clonidine involves an endothelial vasorelaxation mediated by NO release, in addition to presynaptic mechanisms.  (+info)

Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. (35/318)

The regulation of cGMP-specific phosphodiesterase (PDE) 5 and soluble guanylate cyclase (GC) by cGMP- and cAMP-dependent protein kinases (PKG and PKA respectively) was examined in gastric smooth muscle. The NO donor, sodium nitroprusside (SNP), stimulated PDE5 phosphorylation and activity, which was blocked by the selective PKG inhibitor, KT5823, resulting in an elevation of cGMP levels. Activation of PKA either directly by Sp-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothioate, or via isoproterenol- and forskolin-dependent increase in cAMP, also caused an increase in PDE5 phosphorylation and activity, but only in the presence of cGMP; consistent with the dependence of PDE5 phosphorylation and activity on cGMP binding to allosteric sites in the regulatory domain of PDE5. The selective PKA inhibitors, myristoylated protein kinase inhibitor and H-89, blocked the increase in PDE5 phosphorylation and activity induced by PKA. SNP also stimulated soluble GC phosphorylation and activity. KT5823 abolished phosphorylation and augmented soluble GC activity, implying feedback inhibition of soluble GC by PKG-dependent phosphorylation. Phosphorylation by PKG was direct and could be induced in vitro. Activation of PKA had no effect on soluble GC. Thus cGMP levels are regulated by PKG- and PKA-dependent activation of PDE5 and PKG-specific inhibition of soluble GC.  (+info)

Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. (36/318)

BACKGROUND: The efficacy of nitroglycerin (NTG) as a vasodilator is limited by tolerance, which develops shortly after treatment begins. In vascular smooth muscle cells (VSMCs), NTG is denitrated to form nitric oxide (NO), which activates guanylyl cyclase and generates cGMP. cGMP plays a key role in nitrate-induced vasodilation by reducing intracellular Ca(2+) concentration. Therefore, one possible mechanism for development of nitrate tolerance would be increased activity of the cGMP phosphodiesterase (PDE), which decreases cGMP levels. METHODS AND RESULTS: To test this hypothesis, rats were made tolerant by continuous infusion of NTG for 3 days (10 microgram kg(-1). min(-1) SC) with an osmotic pump. Analysis of PDE activities showed an increased function of Ca(2+)/calmodulin (CaM)-stimulated PDE (PDE1A1), which preferentially hydrolyzes cGMP after NTG treatment. Western blot analysis for the Ca(2+)/CaM-stimulated PDE revealed that PDE1A1 was increased 2.3-fold in NTG-tolerant rat aortas. Increased PDE1A1 was due to mRNA upregulation as measured by relative quantitative reverse transcription-polymerase chain reaction. The PDE1-specific inhibitor vinpocetine partially restored the sensitivity of the tolerant vasculature to subsequent NTG exposure. In cultured rat aortic VSMCs, angiotensin II (Ang II) increased PDE1A1 activity, and vinpocetine blocked the effect of Ang II on decrease in cGMP accumulation. CONCLUSIONS: Induction of PDE1A1 in nitrate-tolerant vessels may be one mechanism by which NO/cGMP-mediated vasodilation is desensitized and Ca(2+)-mediated vasoconstriction is supersensitized. Inhibiting PDE1A1 expression and/or activity could be a novel therapeutic approach to limit nitrate tolerance.  (+info)

Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. (37/318)

Nitric oxide and endogenous nitrovasodilators regulate smooth muscle tone by elevation of cGMP and activation of cyclic GMP-dependent protein kinase (PKG). The amplitude and duration of the cGMP signal in smooth muscle is regulated in large part by cGMP-specific cyclic nucleotide phosphodiesterase (PDE5). Previous in vitro data have suggested that both cAMP-dependent protein kinase and PKG can regulate the activity of PDE5. To test if this type of regulation is important in the intact cell, we have generated phospho-PDE5-specific antisera and have utilized isolated smooth muscle cells from mice having a disruption in the PKG I gene as well as cells from normal human smooth muscle. The data show that in human smooth muscle cells, activation of PKG by 8-Br-cGMP led to phosphorylation and activation of PDE5. In the same cells, 8-Br-cAMP had no significant effect on PDE5 phosphorylation. Treatment of wild-type mouse aortic smooth muscle cells with 8-Br-cGMP also induced the phosphorylation of PDE5, whereas no phosphorylation was seen in smooth muscle cells isolated from mice in which the gene for PKG I had been disrupted. As with the human cells, no phosphorylation was seen in the mouse cells in response to 8-Br-cAMP. These results strongly suggest that a major regulatory pathway for control of PDE5 phosphorylation and activity in intact smooth muscle is via PKG-dependent phosphorylation of PDE5. Finally, experiments with calyculin A and okadaic acid suggest that PP1 phosphatase, the catalytic subunit of myosin phosphatase, can regulate PDE5 dephosphorylation. Together, the data suggest that phosphorylation and activation of PDE5 by PKG I and its subsequent dephosphorylation by myosin phosphatase may be key steps in the regulation of relaxation/contraction cycles of smooth muscle.  (+info)

Cyclic GMP-dependent vasodilatory properties of LASSBio 294 in rat aorta. (38/318)

. The effects of LASSBio 294, a new 3,4-methylenedioxybenzoyl-2-thienylhydrazone, on vascular tonus were investigated in isolated rat aortic rings. 2. LASSBio 294 induced a concentration-dependent relaxation of intact rat aortic rings with an inhibitory concentration (IC(50)) of 74 microM (95% confidence limits: 59 - 92). The mechanical removal of the endothelium abolished this effect. 3. In aortic rings with intact endothelium the effect of 100 microM LASSBio 294 was not altered by the pharmacological inhibition of NOS and cyclo-oxygenase pathways with 500 microM L-NAME and 10 microM indomethacin, respectively. 4. LASSBio 294 (100 microM) was able to relax aortic rings pre-contracted with high extracellular K(+) (KCl 100 mM). 5. The relaxant effect of LASSBio 294 was fully reversed (and prevented) by the addition of 1 microM ODQ (1H-(1,2,4)oxadiazolo[4,3-a]quinoxaline-1-one), a selective inhibitor of soluble guanylate cyclase. 6. LASSBio 294 (100 microM) had no direct effect on PDE3 and PDE4 activities, however, it increased by 150% cyclic GMP content in aortic rings pre-treated with 100 microM L-NAME and 10 microM indomethacin, as did 1 microM zaprinast, a selective PDE5 inhibitor. 7. In conclusion, LASSBio 294 induced relaxation of isolated rat aorta probably by directly increasing cyclic GMP content, possibly as a consequence of PDE5 inhibition.  (+info)

Human PDE5A gene encodes three PDE5 isoforms from two alternate promoters. (39/318)

Sildenafil improves erectile function by inhibiting the cGMP-catalytic activity of phosphodiesterase type V (PDE5). We used rapid amplification of cDNA Ends-polymerase chain reaction (RACE-PCR) to isolate three PDE5 isoforms from human corpus cavernosum. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis on eight human cavernous tissue samples showed that all samples expressed the PDE5A1 at a lower level than the PDE5A2 isoform. Five samples expressed the PDE5A3 isoform at various levels while the other three did not. Analysis on non-penile tissues showed that all tissues expressed the A1 and A2 isoforms while only those that have substantial amounts of smooth muscle expressed the A3 isoform. Cloning and sequencing of the PDE5A gene showed that the isoform-specific 5'-ends of the PDE5 mRNAs are encoded from three alternative first exons arranged in the order of A1-A3-A2. Promoter activities were detected upstream from the A1-specific exon and in the intron preceding the A2-specific exon. The upstream PDE5A promoter is expected to direct the expression of all three PDE5 isoforms while the intronic PDE5A2 promoter only the A2 isoform. Both promoters were upregulated by increasing concentrations of either cAMP or cGMP. Several transcription factor AP2 and Sp1-binding sequences identified in the promoters are likely to be the mediators of cAMP/cGMP-responsiveness.  (+info)

Signal amplification: let's turn down the lights. (40/318)

G protein activation by membrane-bound receptors initiates a chain reaction that amplifies cellular responses to external signals. In retinal photoreceptors, amplification by the phototransduction cascade is regulated by quickly switching off the visual pigment that acts as the receptor for light.  (+info)