Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. (65/326)

PDE3A cyclic nucleotide phosphodiesterases regulate cAMP- and cGMP-mediated intracellular signaling in cardiac myocytes. We used antibodies to different regions of PDE3A to demonstrate the presence of three PDE3A isoforms in these cells. These isoforms, whose apparent molecular weights are 136,000, 118,000, and 94,000 ("PDE3A-136," "PDE3A-118," and "PDE3A-94"), are identical save for the deletion of different lengths of N-terminal sequence containing two membrane-association domains and sites for phosphorylation/activation by protein kinase B ("PK-B") and protein kinase A ("PK-A"). PDE3A-136 contains both membrane-association domains and the PK-B and PK-A sites. PDE3A-118 contains only the downstream membrane-association domain and the PK-A sites. PDE3A-94 lacks both membrane localization domains and the PK-B and PK-A sites. The three isoforms are translated from two mRNAs derived from the PDE3A1 gene: PDE3A-136 is translated from PDE3A1 mRNA, whereas PDE3A-118 and PDE3A-94 are translated from PDE3A2 mRNA. Experiments involving in vitro transcription/translation indicate that PDE3A-118 and PDE3A-94 may be translated from different AUGs in PDE3A2 mRNA. These findings suggest that alternative transcriptional and post-transcriptional processing of the PDE3A gene results in the generation of two mRNAs and three protein isoforms in cardiac myocytes that differ with respect to intracellular localization and may be regulated through different signaling pathways.  (+info)

Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. (66/326)

Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cell PDE3 is, however, scarce. To provide such information, we have studied the specific effects of the PDE3B isoform by adenovirus-mediated overexpression. In rat islets and rat insulinoma cells, approximate 10-fold overexpression of PDE3B was accompanied by a 6-8-fold increase in membrane-associated PDE3B activity. The cAMP concentration was significantly lowered in transduced cells (INS-1(832/13)), and insulin secretion in response to stimulation with high glucose (11.1 mm) was reduced by 40% (islets) and 50% (INS-1). Further, the ability of GLP-1 (100 nm) to augment glucose-stimulated insulin secretion was inhibited by approximately 30% (islets) and 70% (INS-1). Accordingly, when stimulating with cAMP, a substantial decrease (65%) in exocytotic capacity was demonstrated in patch-clamped single beta-cells. In untransduced insulinoma cells, application of the PDE3-selective inhibitor OPC3911 (10 microm) was shown to increase glucose-stimulated insulin release as well as cAMP-enhanced exocytosis. The findings suggest a significant role of PDE3B as an important regulator of insulin secretory processes.  (+info)

Effects of phosphodiesterase III inhibition on length-dependent regulation of myocardial function in coronary surgery patients. (67/326)

BACKGROUND: Phosphodiesterase III inhibitors increase myocardial contractility and decrease left ventricular (LV) afterload. We studied whether these effects altered LV response to an increase in cardiac load and affected length-dependent regulation of myocardial function. METHODS: Before the start of cardiopulmonary bypass, a high-fidelity pressure catheter was positioned in the left ventricle and the left atrium in 10 coronary surgery patients. LV response to an increased cardiac load, caused by leg elevation, was assessed during baseline conditions and after administration of milrinone at a dose of 20 micrograms kg-1 over 15 min. Effects on contraction were measured by changes in maximal rate of pressure development (dP/dtmax). Effects on relaxation were assessed by analysis of changes in maximum rate of pressure decrease and by analysis of the load dependency of myocardial relaxation (R = slope of the relation between the time constant of isovolumic relaxation and end systolic pressure). RESULTS: Milrinone increased dP/dtmax but measures of relaxation were unaltered. Leg elevation had more effect on measures of contraction and relaxation after milrinone than at baseline. The relationship between R and changes in dP/dtmax shifted downwards and to the right with milrinone, whereas the relationship between R and changes in end diastolic pressure (EDP) shifted downwards and to the left. CONCLUSIONS: This suggests that milrinone improved contraction, reduced the load dependency of LV pressure decrease, and reduced the change in EDP after leg elevation.  (+info)

Vascular smooth muscle cell phosphodiesterase (PDE) 3 and PDE4 activities and levels are regulated by cyclic AMP in vivo. (68/326)

Prolonged incubation of several cell types, including cultured vascular smooth muscle cells (VSMC), with cyclic AMP-elevating agents increases cAMP phosphodiesterase (PDE) activity and levels. In this work, we describe for the first time an increase in arterial VSMC cAMP PDE activity and levels caused by cAMP-elevating agents when these agents are administered to rats in vivo. Injections of rats with dibutyryl cAMP (dbcAMP) or forskolin increased both PDE3 and PDE4 activities in aortic and femoral artery VSMC. Consistent with the idea that cAMP-elevating agents increased PDE3 and PDE4 activities by acting directly on VSMC, local delivery of dbcAMP or forskolin to femoral arteries using a pluronic gel-based approach increased femoral artery VSMC PDE3 and PDE4 activities to levels similar to those observed after injection of these agents. Consistent with a role for de novo mRNA and protein synthesis in the cAMP-elevating agent induced increase in PDE3 and PDE4, 1) systemic administration of forskolin increased PDE3A, PDE3B, and PDE4D mRNA levels in aortic VSMC and femoral artery VSMC, 2) local delivery of dbcAMP increased PDE3A, PDE3B, and PDE4D3 protein levels in femoral artery VSMC, and 3) local administration of either actinomycin D or cycloheximide attenuated the effect of dbcAMP. In addition, our results indicate that the PDE3 and PDE4 variants increased by cAMP-elevating agents in arterial VSMC in situ were distinct from those elevated by these agents in cultured arterial VSMC. Consistent with the effect of increased VSMC cAMP PDE on blood vessel function, inhibition of PDE3 and PDE4 activities potentiated the relaxant effect of forskolin in dbcAMP-treated femoral artery rings to a greater extent than in untreated control blood vessels. We propose that our findings are consistent with the concept that cAMP regulates VSMC cAMP PDE activity and levels in vivo and that VSMC phenotype influences the choice of cAMP PDE variant that is elevated. Our findings are discussed in the context that agents aimed at specific PDE3 or PDE4 variants could perhaps allow greater control of cAMP-mediated regulation of VSMC behaviors that are phenotype-dependent.  (+info)

Identification of interaction sites of cyclic nucleotide phosphodiesterase type 3A with milrinone and cilostazol using molecular modeling and site-directed mutagenesis. (69/326)

To identify amino acid residues involved in PDE3-selective inhibitor binding, we selected eight presumed interacting residues in the substrate-binding pocket of PDE3A using a model created on basis of homology to the PDE4B crystal structure. We changed the residues to alanine using site-directed mutagenesis technique, expressed the mutants in a baculovirus/Sf9 cell system, and analyzed the kinetic characteristics of inhibition of the mutant enzymes by milrinone and cilostazol, specific inhibitors of PDE3. The mutants displayed differential sensitivity to the inhibitors. Mutants Y751A, D950A, and F1004A had reduced sensitivity to milrinone (K(i) changed from 0.66 microM for the recombinant PDE3A to 7.5 to 156 microM for the mutants), and diminished sensitivity to cilostazol (K(i) of the mutants were 18- to 371-fold higher than that of the recombinant PDE3A). In contrast, the mutants T844A, F972A and Q975A showed increased K(i) for cilostazol but no difference for milrinone from the recombinant PDE3A. Molecular models show that the PDE3 inhibitors cilostazol and milrinone share some of common residues but interact with distinct residues at the active site, suggesting that selective inhibitors can be designed with flexible size against PDE3 active site. Our study implies that highly conserved residuals Y751, D950 and F1004 in the PDE families are key residues for binding of both substrate and inhibitors, and nonconserved T844 may be responsible for the cilostazol selectivity of PDE3A. Detailed knowledge of the structure of inhibitory sites should contribute to development of more potent and specific inhibitory drugs.  (+info)

Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G. (70/326)

1. Regulation of the slowly activating component of delayed rectifier K(+) current (I(Ks)) by intracellular guanosine 3'5' cyclic monophosphate (cGMP) was investigated in guinea-pig sino-atrial (SA) node cells using the whole-cell patch-clamp method. 2. When a cell was dialyzed with pipette solution containing 100 micro M cGMP, I(Ks) started to gradually increase and reached a maximum increase of a factor of 2.37 +/- 0.39 (n = 4) about 10-15 min after rupture of patch membrane. Atrial natriuretic peptide (ANP, 100 nM) also potentiated I(Ks), consistent with intracellular cGMP-induced enhancement of I(Ks). 3. Bath application of a selective blocker of the cGMP-inhibited phosphodiesterase (PDE3) milrinone (100 microM) enhanced I(Ks) by a factor of 1.50 +/- 0.09 (n = 4) but failed to further enhance I(Ks) after a maximum stimulation by intracellular cGMP (100 microM), suggesting that blockade of PDE3 activity is involved in the enhancement of I(Ks). A potent but nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX, 100 microM) further increased I(Ks) stimulated by 100 microM milrinone, indicating that PDE subtypes other than PDE3 are also involved in the regulation of basal I(Ks) in guinea-pig SA node cells. 4. Bath application of 100 microM 8-bromoguanosine 3'5' cyclic monophosphate (8-Br-cGMP) increased I(Ks) by a factor of 1.48 +/- 0.11 (n = 5) and this stimulatory effect was totally abolished by cGMP-dependent protein kinase (PKG) inhibitor KT-5823 (500 nM), suggesting that the activation of PKG also mediates cGMP-induced potentiation of I(Ks). 5. These results strongly suggest that intracellular cGMP potentiates I(Ks) not only by blocking PDE3 but also by activating PKG in guinea-pig SA node cells.  (+info)

Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5. (71/326)

BACKGROUND: The cyclic AMP specific phosphodiesterase, PDE4D5 interacts with the beta-propeller protein RACK1 to form a signaling scaffold complex in cells. Two-hybrid analysis of truncation and mutant constructs of the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5 were used to define a domain conferring interaction with the signaling scaffold protein, RACK1. RESULTS: Truncation and mutagenesis approaches showed that the RACK1-interacting domain on PDE4D5 comprised a cluster of residues provided by Asn-22/Pro-23/Trp-24/Asn-26 together with a series of hydrophobic amino acids, namely Leu-29, Val-30, Leu-33, Leu-37 and Leu-38 in a 'Leu-Xaa-Xaa-Xaa-Leu' repeat. This was done by 2-hybrid analyses and then confirmed in biochemical pull down analyses using GST-RACK1 and mutant PDE4D5 forms expressed in COS cells. Mutation of Arg-34, to alanine, in PDE4D5 attenuated its interaction with RACK1 both in 2-hybrid screens and in pull down analyses. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, bound to RACK1 with similar affinity to native PDE4D5 itself (Ka circa 6 nM). CONCLUSIONS: The RACK1 Interaction Domain on PDE4D5, that we here call RAID1, is proposed to form an amphipathic helical structure that we suggest may interact with the C-terminal beta-propeller blades of RACK1 in a manner akin to the interaction of the helical G-gamma signal transducing protein with the beta-propeller protein, G-beta.  (+info)

Lipopolysaccharide-induced acute renal failure in conscious rats: effects of specific phosphodiesterase type 3 and 4 inhibition. (72/326)

In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP). LPS-induced fall in GFR and proximal tubular outflow were sustained on day 2. Furthermore, LPS-treated rats showed a marked increase in fractional distal water excretion, despite significantly elevated levels of plasma vasopressin (AVP). Semiquantitative immunoblotting showed that LPS increased the expression of the Na(+),K(+),2Cl(-)-cotransporter (BSC1) in the thick ascending limb, whereas the expression of the AVP-regulated water channel aquaporin-2 in the collecting duct (CD) was unchanged. Pretreatment with milrinone or Ro-20-1724 enhanced LPS-induced increases in plasma tumor necrosis factor-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape from AVP in the CDs, which could be aimed to protect against water intoxication in septic conditions associated with decreased GFR and high levels of AVP.  (+info)