Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B. (41/326)

Cyclic nucleotide phosphodiesterase 3A (PDE3A) hydrolyzes cAMP to AMP, but is competitively inhibited by cGMP due to a low k(cat) despite a tight K(m). Cyclic AMP elevation is known to inhibit all pathways of platelet activation, and thus regulation of PDE3 activity is significant. Although cGMP elevation will inhibit platelet function, the major action of cGMP in platelets is to elevate cAMP by inhibiting PDE3A. To investigate the molecular details of how cGMP, a similar but not identical molecule to cAMP, behaves as an inhibitor of PDE3A, we constructed a molecular model of the catalytic domain of PDE3A based on homology to the recently determined X-ray crystal structure of PDE4B. Based on the excellent fit of this model structure, we mutated nine amino acids in the putative catalytic cleft of PDE3A to alanine using site-directed mutagenesis. Six of the nine mutants (Y751A, H840A, D950A, F972A, Q975A, and F1004A) significantly decreased catalytic efficiency, and had k(cat)/K(m) less than 10% of the wild-type PDE3A using cAMP as substrate. Mutants N845A, F972A, and F1004A showed a 3- to 12-fold increase of K(m) for cAMP. Four mutants (Y751A, H840A, D950A, and F1004A) had a 9- to 200-fold increase of K(i) for cGMP in comparison to the wild-type PDE3A. Studies of these mutants and our previous study identified two groups of amino acids: E866 and F1004 contribute commonly to both cAMP and cGMP interactions while N845, E971, and F972 residues are unique for cAMP and the residues Y751, H836, H840, and D950 interact with cGMP. Therefore, our results provide biochemical evidence that cGMP interacts with the active site residues differently from cAMP.  (+info)

Functional coupling between nitric oxide synthesis and VIP release within enteric nerve terminals of the rat: involvement of protein kinase G and phosphodiesterase 5. (42/326)

1. The subcellular mechanisms involved in the effect of nitric oxide (NO) on the release of vasoactive intestinal polypeptide (VIP) were examined in synaptosomes isolated from rat small intestine. 2. VIP release was stimulated by the NO donor SNAP (10(-7)-10(-4) M) in an oxyhaemoglobin-sensitive manner. The presence of the guanylate cyclase inhibitor ODQ (10(-5) M), or inhibition of protein kinase G (PKG) by KT 5823 (3 x 10(-6) M) or Rp-8Br-PET-cGMPS (5 x 10(-7) M), antagonized the SNAP-induced VIP release, suggesting a regulatory role of PKG, confirming previously published data from enteric ganglia. This finding was further supported by the fact that direct PKG activation by the stable cGMP analogue 8-pCPT-cGMP stimulated VIP secretion to the same extent as SNAP. 3. Basal VIP secretion was enhanced in the presence of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase 5 (PDE 5), suggesting a functional role of PDE 5 in NO-cGMP signalling. Supportive evidence for this finding was obtained by demonstration of the presence of PDE 5 using RT-PCR. 4. Stimulation of endogenous NO production by L-arginine was also effective in releasing VIP. The effect was abolished in the presence of KT 5823, but was insensitive to oxyhaemoglobin (10(-3) M), suggesting that an interaction between NO and VIP is likely to occur within the same nerve terminal rather than between terminals. 5. NO synthesis was not affected by VIP (10(-8)-10(-5) M), suggesting that there is no feedback regulation between the NO and the VIP pathways. 6. These findings support the notion that an anatomical and functional interrelationship exists between NO and VIP in enteric nerve terminals and that complex signalling mechanisms involving PKG and PDE 5 contribute to NO-induced VIP release.  (+info)

Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors: the role of protein kinase A and p38 mitogen-activated protein kinase. (43/326)

BACKGROUND: Phosphodiesterase III inhibitors (PDEIII-Is) improve the hemodynamic status of heart failure via inotropic/vasodilatory effects attributable to the increase in intracellular cAMP level. Direct cardioprotection by PDEIII-Is and its underlying mechanisms, however, have not been identified. We tested the infarct size-limiting effect of PDEIII-Is and the roles of cAMP, protein kinase (PK) A, PKC, and mitogen-activated protein kinase (MAPK) families in open-chest dogs. Methods and Results-- Milrinone, olprinone (PDEIII-Is), or dibutyryl-cAMP (db-cAMP) was injected intravenously 30 minutes before 90-minute ischemia, followed by 6 hours of reperfusion. Olprinone was also examined with an intracoronary cotreatment with a PKA inhibitor (H89), a PKC inhibitor (GF109203X), an extracellular signal-regulated kinase kinase (MEK) inhibitor (PD98059), or a p38 MAPK inhibitor (SB203580) throughout the preischemic period. Either PDEIII-Is or db-cAMP caused substantial hemodynamic changes, which returned to control levels in 30 minutes. Collateral flow and percent risk area were identical for all groups. Both PDEIII-Is and db-cAMP increased myocardial p38 MAPK activity during the preischemic period, which was blocked by H89, but not by GF109203X. Both PDEIII-Is and db-cAMP reduced infarct size (19.1+/-4.1%, 17.5+/-3.3%, and 20.3+/-4.8%, respectively, versus 36.1+/-6.2% control, P<0.05 each). Furthermore, the effect of olprinone was blunted by either H89 (35.5+/-6.4%) or SB203580 (32.6+/-5.9%), but not by GF109203X or PD98059. H89, GF109203X, PD98059, or SB203580 alone did not influence infarct size. CONCLUSIONS: Pretreatment with PDEIII-Is has cardioprotective effects via cAMP-, PKA-, and p38 MAPK-dependent but PKC-independent mechanisms in canine hearts.  (+info)

Activation of mouse phosphodiesterase 3B gene promoter by adipocyte differentiation in 3T3-L1 cells. (44/326)

Activation of phosphodiesterase (PDE) 3B reduces free fatty acid output from adipocytes. Induction of PDE3B gene expression by adipocyte differentiation could improve insulin resistance. To examine whether the PDE3B promoter is activated by this differentiation, the 5' flanking sequence of the mouse PDE3B gene was isolated. The transcription initiation site was determined to be located 195 bp upstream of the translation start site. No putative binding site for peroxisome proliferator-activated receptor gamma was found within 2 kb upstream of the transcription initiation site. This region had promoter activity, which was further activated on adipocyte differentiation in 3T3-L1 cells.  (+info)

Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. (45/326)

We investigated the mechanisms responsible for the anti-lipolytic effect of intracellular Ca2+ ([Ca2+]i) in human adipocytes. Increasing [Ca2+]i inhibited lipolysis induced by b-adrenergic receptor activation, A1 adenosine receptor inhibition, adenylate cyclase activation, and phosphodiesterase (PDE) inhibition, as well as by a hydrolyzable cAMP analog, but not by a nonhydrolyzable cAMP analog. This finding indicates that the anti-lipolytic effect of [Ca2+]i may be mediated by the activation of adipocyte PDE. Consistent with this theory, [Ca2+]i inhibition of isoproterenol-stimulated lipolysis was reversed completely by the nonselective PDE inhibitor isobutyl methylxanthine and also by the selective PDE 3B inhibitor cilostamide, but not by selective PDE 1 and 4 inhibitors. In addition, phosphatidylinositol-3 kinase inhibition with wortmannin completely prevented insulin's anti-lipolytic effect but only minimally blocked [Ca2+]i's effect, which suggests that [Ca2+]i and insulin may activate PDE 3B via different mechanisms. In contrast, the antilipolytic effect of [Ca2+]i was not affected by inhibitors of calmodulin, Ca2+/calmodulin-dependent kinase, protein phosphatase 2B, and protein kinase C. Finally, [Ca2+]i inhibited significantly isoproterenol-stimulated increases in cAMP levels and hormone-sensitive lipase phosphorylation in human adipocytes. In conclusion, increasing [Ca2+]i exerts an antilipolytic effect mainly by activation of PDE, leading to a decrease in cAMP and HSL phosphorylation and, consequently, inhibition of lipolysis.  (+info)

Phorbol 12-myristate 13-acetate triggers the protein kinase A-mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). (46/326)

Phosphodiesterase 4D5 is the sole PDE4D cAMP phosphodiesterase isoform expressed in human aortic smooth muscle cells (HASMC). Phorbol 12-myristate 13-acetate (PMA) challenge of HASMC rapidly activated PDE4D5 through a process ablated by the mitogen-activated protein kinase kinase inhibitor PD98059. PMA elicited an inhibitory effect on PDE4D5 activity in HASMC treated with the cyclooxygenase (COX) inhibitor indomethacin, the COX-2 selective inhibitor NS-398, the phospholipase A(2) inhibitor quinacrine, and the cAMP-dependent protein kinase A (PKA) inhibitor H89. PMA challenge of COS-1 cells elicited the rapid inhibition and phosphorylation of both recombinant and endogenous PDE4D5 in a manner ablated by PD98059 and not seen in S651A mutant PDE4D5. PMA promoted the generation of PGE(2) in the medium of HASMC and caused activation of both extracellular signal-regulated kinase (ERK) and PKA through a process ablated by indomethacin, NS-398, quinacrine, and PD98059. Exogenous prostaglandin (PG) E(2) increased cAMP levels and activated PKA in HASMC. COX-2 was expressed in HASMC but not in COS-1 cells. Forskolin challenge of COS-1 cells activated PDE4D5 by causing the PKA-mediated phosphorylation of Ser126 as detected using a novel phosphospecific antiserum. PMA challenge of HASMC elicited phosphorylation of the stimulatory PKA-specific phosphorylation site, Ser126 in PDE4D5 in a manner ablated by PD98059, indomethacin, and H89. We propose that, in HASMC, PMA activates PDE4D5 through an ERK-controlled autocrine mechanism. This involves PGE(2) generation, which causes activation of adenylyl cyclase, allowing PKA to elicit net activation of PDE4D5 by phosphorylation at Ser126.  (+info)

Role of phosphodiesterase type 3A in rat oocyte maturation. (47/326)

It is generally accepted that cyclic nucleotides are key signaling molecules in the control of oocyte meiotic resumption. Given the role of phosphodiesterases (PDEs) in cyclic nucleotide degradation, this study was undertaken to investigate the properties and regulation of PDEs expressed in rat oocytes. Cilostamide-sensitive PDE3 was the major activity detected in denuded oocytes, whereas no PDE3 activity could be detected in cumulus cells. Moreover, comparable levels of PDE3 activity were measured in cumulus-oocyte complexes (COCs) and in denuded oocytes. The oocyte PDE was recovered in the soluble fraction of the homogenate and immunoprecipitated with a specific PDE3A antibody. A significant and transient increase (P < 0.05) in PDE3 activity was measured in the oocytes after 30 min of culture (70 min after isolation) compared with immediately after collection (10 min after isolation). Conversely, no changes in activity were observed when denuded oocytes or cumulus cells were incubated for up to 130 min. Evaluation of oocyte maturation indicated that only 10% of oocytes had resumed meiosis at the peak of the PDE3 activity. A significant increase (P < 0.05) in PDE3 activity was measured in COCs when follicle-enclosed oocytes were cultured in the presence of hCG. Again, this increase preceded oocyte maturation. In conclusion, these data demonstrate that PDE3A is the major PDE form expressed in mammalian oocytes. PDE3A activity increases prior to resumption of meiosis in both spontaneous and gonadotropin-stimulated maturation. These findings strongly support the hypothesis that an increase in oocyte PDE3A activity is one of the intraoocyte mechanisms controlling resumption of meiosis in rat oocytes, at least in vitro.  (+info)

ACh-induced rebound stimulation of L-type Ca(2+) current in guinea-pig ventricular myocytes, mediated by Gbetagamma-dependent activation of adenylyl cyclase. (48/326)

1. The effects that muscarinic receptor stimulation have on the cAMP-dependent regulation of L-type Ca(2+) currents were studied in isolated guinea-pig ventricular myocytes using the whole-cell configuration of the patch-clamp technique. 2. The muscarinic agonist ACh inhibited the Ca(2+) current stimulated by the beta-adrenergic agonist isoprenaline (Iso), and washout of ACh revealed a stimulatory response that appeared as a transient rebound increase in the amplitude of the Ca(2+) current. The ACh-induced stimulatory effect was not observed in the absence of Iso. 3. ACh-induced rebound stimulation was also observed in the presence of H(2) histamine receptor activation and cholera toxin treatment, which like beta-adrenergic receptor activation enhance adenylyl cyclase (AC) activity in a stimulatory G protein (G(s))-dependent manner. ACh-induced rebound stimulation was not observed in the presence of forskolin, which enhances AC activity in a G(s)-independent manner. 4. Pertussis toxin (PTX) treatment blocked both the stimulatory and inhibitory effects of ACh. Intracellular dialysis with QEHA, a peptide that binds free G protein betagamma subunits, selectively antagonized the stimulatory effect, leaving an enhanced inhibitory effect. 5. Evidence for the expression of AC4, an isoform of AC that can be stimulated by Gbetagamma but only in the presence of Galpha(s), was obtained by Western blot analysis of guinea-pig ventricular myocyte membrane preparations. 6. These results suggest that muscarinic receptor stimulation facilitates as well as inhibits cAMP-dependent regulation of the Ca(2+) current and that the net response is a balance between these two actions. We suggest that the stimulatory effect is due to a direct activation of AC4 by the betagamma subunits of a PTX-sensitive G protein.  (+info)