A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity. (17/31)

Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.  (+info)

Signaling through cGMP-dependent protein kinase I in the amygdala is critical for auditory-cued fear memory and long-term potentiation. (18/31)

 (+info)

Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2. (19/31)

The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BNxKMI-mri/mri)F1xKMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII.  (+info)

Regulation of epithelial sodium channels by cGMP/PKGII. (20/31)

 (+info)

Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. (21/31)

 (+info)

A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle. (22/31)

 (+info)

Transcriptional regulation of cGMP-dependent protein kinase II (cGK-II) in chondrocytes. (23/31)

The C-type natriuretic peptide/natriuretic peptide receptor-B/cGMP pathway plays an important role in the regulation of endochondral ossification. In chondrocytes, the physiological effect of cGMP is mediated primarily by the activation of cGMP-dependent protein kinase II (cGK-II). In this study, we investigated the transcriptional regulation of cGK-II in chondrocytes. The expression pattern of cGK-II transcripts was examined during chondrogenic differentiation of ATDC5 cells. cGK-II mRNA was not detectable in undifferentiated cells, but increased dramatically prior to differentiation to the hypertrophic stage. To analyze the transcriptional regulation of cGK-II, the 5'-flanking region of the mouse cGK-II gene was isolated and characterized. The promoter activity of the cGK-II gene decreased markedly following deletion and mutagenesis of the putative Nkx-binding site between nucleotide positions -292 and -286. These results suggest that the homeobox gene Nkx family is critical for the transcriptional regulation of cGK-II during chondrogenesis.  (+info)

The cGMP-dependent protein kinase II Is an inhibitory modulator of the hyperpolarization-activated HCN2 channel. (24/31)

 (+info)