Primary structure of a human IgA1 immunoglobulin. I. Isolation, composition, and amino acid sequence of the chymotryptic peptides. (33/1543)

As the initial phase of the determination of the complete covalent structure of a human immunoglobulin A, 52 chymotryptic peptides, ranging in length from 2 to 37 residues, were isolated and characterized from the reduced and carboxymethylated alpha1 heavy chain of the myeloma IgA protein Bur. The peptides were subjected to sequence analysis by the dansylation technique, manual and automatic Edman degradation, and carboxypeptidase digestion. The results, in conjunction with the data on the tryptic and thermolysin peptides and the cyanogen bromide fragments reported in the accompanying papers, established the complete primary structure of a human IgA chain.  (+info)

Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. (34/1543)

The characterization of a discontinuous epitope in the C5 region of the HIV envelope protein HIV-gp120, recognized by 1331A, a human mAb, is reported. Regions involved in affinity binding in the HIV-gp120 molecule were identified by epitope excision/extraction methods followed by matrix assisted laser desorption-time of flight mass spectrometry. In epitope excision, the protein is bound in its native conformation to an immobilized Ab and then digested with proteolytic enzymes. In epitope extraction, the protein is first digested and subsequently allowed to react with the Ab. A series of proteolytic digestions of the 1331A/HIV-gp120 complex allowed the identification of protected amino acids in two noncontinuous regions of the C5 region of HIV-gp120. Interaction of the Ab with amino acids I487 and E507 of HIV-gp120 is essential for efficient binding. This is the first application of this approach for the identification and characterization of a discontinuous epitope. The results are consistent with molecular modeling results, indicating that these amino acids are located on opposite sides of a hydrophobic pocket. This pocket is thought to be of importance for the interaction of HIV-gp120 with the transmembrane protein HIV-gp41.  (+info)

Structure-function relationships in the carboxylic-ester-hydrolase superfamily. Disulfide bridge arrangement in porcine intestinal glycerol-ester hydrolase. (35/1543)

CNBr fragments from porcine intestinal glycerol-ester hydrolase were separated by SDS/PAGE under reducing and nonreducing conditions, and their amino-acid sequences were analysed. Two intra-chain disulfide bridges were identified, namely Cys70-Cys99 (loop A) and Cys256-Cys267 (loop B). As the Cys71 sulfhydryl group could not be alkylated with iodoacetamide, it is suggested that the residue is blocked rather than being present in the free form. The two disulfide bridges of intestinal glycerol-ester hydrolase are present in the cholinesterase family, although the enzyme showed only about 35% identity with these proteins. Furthermore, the finding that glycerol-ester hydrolase was partly inactivated under reducing conditions suggests that one or both disulfide bridges are important for the enzyme conformation. Lastly, glycerol-ester hydrolase was also found to hydrolyse cholinergic substrates, although residues Trp86 and Asp74 which are considered to be the main constituents of the 'anionic' subsite responsible for substrate binding in cholinesterases were absent from loop A. Other amino-acid residues in the glycerol-ester hydrolase may therefore be responsible for the binding of cholinergic substrates to the enzyme.  (+info)

Some general methods of preparing affinity columns. (36/1543)

Some general methods of covalent coupling of nucleotides, especially derivatized nucleotides, polynucleotides and cofactors to insoluble polymers are described in this paper. Wherever necessary individual methods also carry some information on the binding of enzymes to the same polymers to serve as a guide to the efficiency of the coupling methods.  (+info)

Biochemical structural analysis of the lantibiotic mutacin II. (37/1543)

Mutacin II is a post-translationally modified lantibiotic peptide secreted by Streptococcus mutans T8, which inhibits the energy metabolism of sensitive cells. The deduced amino acid sequence of promutacin II is NRWWQGVVPTVSYECRMNSWQHVFTCC, which is capable of forming three thioether bridges. It was not obvious, however, how the three thioether bridges are organized. To examine the bridging, the cyanogen bromide cleavage products of mutacin II and its variants generated by protein engineering, C15A, C26A, and C15A/C26A, were analyzed by mass spectrometry. Analysis of the wild type molecule and the C15A variant excluded several possibilities and also indicated a high fidelity of formation of the thioether bridges. This allowed us to further resolve the structure by analysis (mass spectrometry and tandem mass spectrometry) of the cyanogen bromide cleavage fragments of the C26A and C15A/C26A mutants. Nuclear magnetic resonance analysis established the presence of one and two dehydrobutyrine residues in mutacin II and the C15A variant, respectively, thus yielding the final structure. The results of this investigation showed that the C-terminal part contains three thioether bridges connecting Cys residues 15, 26, and 27 to Ser/Thr residues 10, 12 and 19, respectively, with Thr(25) being modified to dehydrobutyrine.  (+info)

A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. (38/1543)

Vitamin E (alpha-tocopherol) is an essential dietary nutrient for humans and animals. The mechanisms involved in cellular regulation as well as in the preferential cellular and tissue accumulation of alpha-tocopherol are not yet well established. We previously reported (Stocker, A., Zimmer, S., Spycher, S. E., and Azzi, A. (1999) IUBMB Life 48, 49-55) the identification of a novel 46-kDa tocopherol-associated protein (TAP) in the cytosol of bovine liver. Here, we describe the identification, the molecular cloning into Escherichia coli, and the in vitro expression of the human homologue of bovine TAP, hTAP. This protein appears to belong to a family of hydrophobic ligand binding proteins, which have the CRAL (cis-retinal binding motif) sequence in common. By using a biotinylated alpha-tocopherol derivative and the IASys resonant mirror biosensor, the purified recombinant protein was shown to bind tocopherol at a specific binding site with K(d) 4.6 x 10(-7) m. Northern analyses showed that hTAP mRNA has a size of approximately 2800 base pairs and is ubiquitously expressed. The highest amounts of hTAP message are found in liver, brain, and prostate. In conclusion, hTAP has sequence homology to proteins containing the CRAL_TRIO structural motif. TAP binds to alpha-tocopherol and biotinylated tocopherol, suggesting the existence of a hydrophobic pocket, possibly analogous to that of SEC14.  (+info)

Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. (39/1543)

von Willebrand factor (VWF) is a multimeric glycoprotein that is required for normal hemostasis. After translocation into the endoplasmic reticulum, proVWF subunits dimerize through disulfide bonds between their C-terminal cystine knot-like (CK) domains. CK domains are characterized by six conserved cysteines. Disulfide bonds between cysteines 2 and 5 and between cysteines 3 and 6 define a ring that is penetrated by a disulfide bond between cysteines 1 and 4. Dimerization often is mediated by additional cysteines that differ among CK domain subfamilies. When expressed in a baculovirus system, recombinant VWF CK domains (residues 1957-2050) were secreted as dimers that were converted to monomers by selective reduction and alkylation of three unconserved cysteine residues: Cys(2008), Cys(2010), and Cys(2048). By partial reduction and alkylation, chemical and proteolytic digestion, mass spectrometry, and amino acid sequencing, the remaining intrachain disulfide bonds were characterized: Cys(1961)-Cys(2011) (), Cys(1987)-Cys(2041) (), Cys(1991)-Cys(2043) (), and Cys(1976)-Cys(2025). The mutation C2008A or C2010A prevented dimerization, whereas the mutation C2048A did not. Symmetry considerations and molecular modeling based on the structure of transforming growth factor-beta suggest that one or three of residues Cys(2008), Cys(2010), and Cys(2048) in each subunit mediate the covalent dimerization of proVWF.  (+info)

Characterization of an anti-Borrelia burgdorferi OspA conformational epitope by limited proteolysis of monoclonal antibody-bound antigen and mass spectrometric peptide mapping. (40/1543)

Lyme borreliosis is a multisystem disorder caused by the spirochete Borrelia burgdorferi that is transmitted to humans by the tick Ixodes dammini. The immune response against the 31 kDa OspA, which is one of the most abundant B. burgdorferi proteins, appears to be critical in preventing infection and tissue inflammation. Detailed knowledge of the immunological and molecular characteristics of the OspA protein is important for the development of reliable diagnostic assays. In this study, we characterized a new conformational epitope present within the middle part of B. burgdorferi OspA. Our approach used enzymatic proteolyses of the immune complex followed by mass spectrometric identification of the peptides bound to the antibody. It appears to be one of the first reports on the characterization of a discontinuous epitope using mass spectrometry.  (+info)