The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. (1/1543)

Serum amyloid A isoforms, apoSAA1 and apoSAA2, are apolipoproteins of unknown function that become major components of high density lipoprotein (HDL) during the acute phase of an inflammatory response. ApoSAA is also the precursor of inflammation-associated amyloid, and there is strong evidence that the formation of inflammation-associated and other types of amyloid is promoted by heparan sulfate (HS). Data presented herein demonstrate that both mouse and human apoSAA contain binding sites that are specific for heparin and HS, with no binding for the other major glycosaminoglycans detected. Cyanogen bromide-generated peptides of mouse apoSAA1 and apoSAA2 were screened for heparin binding activity. Two peptides, an apoSAA1-derived 80-mer (residues 24-103) and a smaller carboxyl-terminal 27-mer peptide of apoSAA2 (residues 77-103), were retained by a heparin column. A synthetic peptide corresponding to the CNBr-generated 27-mer also bound heparin, and by substituting or deleting one or more of its six basic residues (Arg-83, His-84, Arg-86, Lys-89, Arg-95, and Lys-102), their relative importance for heparin and HS binding was determined. The Lys-102 residue appeared to be required only for HS binding. The residues Arg-86, Lys-89, Arg-95, and Lys-102 are phylogenetically conserved suggesting that the heparin/HS binding activity may be an important aspect of the function of apoSAA. HS linked by its carboxyl groups to an Affi-Gel column or treated with carbodiimide to block its carboxyl groups lost the ability to bind apoSAA. HDL-apoSAA did not bind to heparin; however, it did bind to HS, an interaction to which apoA-I contributed. Results from binding experiments with Congo Red-Sepharose 4B columns support the conclusions of a recent structural study which found that heparin binding domains have a common spatial distance of about 20 A between their two outer basic residues. Our present work provides direct evidence that apoSAA can associate with HS (and heparin) and that the occupation of its binding site by HS, and HS analogs, likely caused the previously reported increase in amyloidogenic conformation (beta-sheet) of apoSAA2 (McCubbin, W. D., Kay, C. M., Narindrasorasak, S., and Kisilevsky, R. (1988) Biochem. J. 256, 775-783) and their amyloid-suppressing effects in vivo (Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., and Szarek, W. A. (1995) Nat. Med. 1, 143-147), respectively.  (+info)

The amino acid sequence of rabbit cardiac troponin I. (2/1543)

The complete amino acid sequence of troponin I from rabbit cardiac muscle was determined by the isolation of four unique CNBr fragments, together with overlapping tryptic peptides containing radioactive methionine residues. Overlap data for residues 35-36, 93-94 and 140-145 are incomplete, the sequence at these positions being based on homology with the sequence of the fast-skeletal-muscle protein. Cardiac troponin I is a single polypeptide chain of 206 residues with mol.wt. 23550 and an extinction coefficient, E 1%,1cm/280, of 4.37. The protein has a net positive charge of 14 and is thus somewhat more basic than troponin I from fast-skeletal muscle. Comparison of the sequences of troponin I from cardiac and fast skeletal muscle show that the cardiac protein has 26 extra residues at the N-terminus which account for the larger size of the protein. In the remainder of sequence there is a considerable degree of homology, this being greater in the C-terminal two-thirds of the molecule. The region in the cardiac protein corresponding to the peptide with inhibitory activity from the fast-skeletal-muscle protein is very similar and it seems unlikely that this is the cause of the difference in inhibitory activity between the two proteins. The region responsible for binding troponin C, however, possesses a lower degree of homology. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50072 (20 pages), at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1976) 153, 5.  (+info)

The primary structure of the parvalbumin II of pike (Esox lucius). (3/1543)

The amino acid sequence of the parvalbumin II of the pike is reported. The protein has a molecular weight of 11 435. It consists of a single polypeptide chain of 107 amino acid residues with an acetyl group blocking the N-terminus and an alanine residue at the C-terminus. The molecule has been enzymically cleaved by trypsin, thermolysin and by the protease of the Staphylococcus aureus strain V8. Chemical cleavages make use of the CNBr reaction and of the sulfocyanoethylation method. The comparison of this amino acid sequence with that of the parvalbumin III of the pike indicates that these two homologous proteins belong respectively to two different subgroups derived from an early gene duplication of an ancestral gene at least prior to the differentiation of the Osteichthyes.  (+info)

Thermodynamic and kinetic analysis of the Escherichia coli thioredoxin-C' fragment complementation system. (4/1543)

Escherichia coli thioredoxin was cleaved with CNBr at its single Met residue at position 37, which lies in the middle of a long alpha-helix. The two fragments, 1-37 and 38-108, were purified and characterized by using CD and fluorescence spectroscopy. Both fragments lack structure at neutral pH and room temperature. The secondary and tertiary structural contents of the non-covalent complex formed on the mixing of the two peptide fragments are 47% and 35% of the intact protein respectively. The thermodynamics and kinetics of fragment association were characterized by titration calorimetry and stopped-flow fluorescence spectroscopy. Single phases were observed for both association and dissociation, with rate constants at 298 K of kon=4971+/-160 M-1.s -1 and koff=0. 063+/-0.009 s-1 respectively. The ratio kon/koff was very similar to the binding constant determined by titration calorimetry, suggesting that binding is a two-state process. The values for DeltaCp, DeltaH0 and DeltaG0 at 298 K for dissociation of the complex were 5.7 kJ. mol-1.K-1, 45.3 kJ.mol-1 and 29.8 kJ.mol-1 respectively. The value for DeltaH0 was linearly dependent on temperature from 8-40 degrees C, suggesting that DeltaCp is independent of temperature. The values for DeltaCp and DeltaG0 are very similar to the corresponding values for the unfolding of intact thioredoxin at 25 degrees C. However, both DeltaH0 and DeltaS are significantly more positive for dissociation of the complex, suggesting a decreased hydrophobic stabilization of the complex relative to the situation for intact thioredoxin.  (+info)

Oxidative refolding of recombinant prochymosin. (5/1543)

The disulphide-coupled refolding of recombinant prochymosin from Escherichia coli inclusion bodies was investigated. Prochymosin solubilized from inclusion bodies is endowed with free thiol groups and disulphide bonds. This partially reduced form undergoes renaturation more efficiently than the fully reduced form, suggesting that some native structural elements existing in inclusion bodies and remaining after denaturation function as nuclei to initiate correct refolding. This assumption is supported by the finding that in the solubilized prochymosin molecule the cysteine residues located in the N-terminal domain of the protein are not incorrectly paired with the other cysteines in the C-terminal domain. Addition of GSH/GSSG into the refolding system facilitates disulphide rearrangement and thus enhances renaturation, especially for the fully reduced prochymosin. Based on the results described in this and previous papers [Tang, Zhang and Yang (1994) Biochem. J. 301, 17-20], a model to depict the refolding process of prochymosin is proposed. Briefly, the refolding process of prochymosin consists of two stages: the formation and rearrangement of disulphide bonds occurs at the first stage in a pH11 buffer, whereas the formation and adjustment of tertiary structure leading to the native conformation takes place at the second stage at pH8. The pH11 conditions help polypeptides to refold in such a way as to favour the formation of native disulphide bonds. Disulphide rearrangement, the rate-limiting step during refolding, can be achieved by thiol/disulphide exchange initiated by free thiol groups present in the prochymosin polypeptide, GSH/GSSG or protein disulphide isomerase.  (+info)

Characterization of the myosin light chain kinase from smooth muscle as an actin-binding protein that assembles actin filaments in vitro. (6/1543)

In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles.  (+info)

A study of renaturation of reduced hen egg white lysozyme. Enzymically active intermediates formed during oxidation of the reduced protein. (7/1543)

The material obtained from reduced hen egg white lysozyme after complete air oxidation at pH 8.0 and 37 degrees has yielded, by gel filtration on a Bio-Gel P-30 column, enzymically active species and an enzymically inactive form which eluted sooner than the active species but later than expected for a dimer of lysozyme. Reduced lysozyme also elutes at the same position as this inactive material. Examination of the fragments produced on CNBr cleavage of the inactive form indicates that at least 24% of the population contains incorrect disulfide bonds involving half-cystine residues 6, 30, 115, and 127. Tryptophan fluorescence and the intrinsic viscosity of the inactive form show an enlarged molecular domain with a disordered conformation. The yield of the inactive form increases as the oxidation of reduced lysozyme is accelerated using cupric ion. In the presence of 4 X 10(-5) M cupric ion, reduced lysozyme forms almost quantitatively the inactive form, which is almost completely converted to the native form by sulfhydryl-disulfide interchange catalyzed by thiol groups of either reduced lysozyme or beta-mercaptoethanol. The material trapped by alkylation of the free sulfhydryl groups with [1-14C]iodoacetic acid during the early stage of air oxidation of reduced lysozyme was fractionated by gel filtration to permit separation of the active species from the inactive form. Ion exchange chromatography of the active species yielded completely renatured lysozyme and three major enzymically active radioactive derivatives. Two of these derivatives contained approximately 2 mol of S-carboxymethylcysteine. Isolation and characterization of radioactive tryptic peptides from each of the three active forms, permitted the identification of Cys 6 and Cys 127, Cys 76 and 94, and Cys 80 as the sulfhydryl groups alkylated in these three incompletely oxidized, partially active forms. Thus, it appears that the interatomic interactions maintaining the compact three-dimensional structure of native lysozyme are operational even when one of these three native disulfide bonds between Cys 6 and Cys 127, Cys 76 and Cys 94, and Cys 64 and 80 is open.  (+info)

Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates. (8/1543)

Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent--2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels alpha-lactalbumin as a function of pH (3-7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23-34) and C (86-98) helix of the native structure are extensively labeled. The small beta-domain (40-50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of alpha-lactalbumin, the alpha-domain has a greater degree of persistent structure than the beta-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.  (+info)