Deleterious role of IFNgamma in a toxic model of central nervous system demyelination. (17/102)

Interferon-gamma (IFNgamma) is a pleiotropic cytokine that plays an important role in many inflammatory processes, including autoimmune diseases such as multiple sclerosis (MS). Demyelination is a hallmark of MS and a prominent pathological feature of several other inflammatory diseases of the central nervous system, including experimental autoimmune encephalomyelitis, an animal model of MS. Accordingly, in this study we followed the effect of IFNgamma in the demyelination and remyelination process by using an experimental autoimmune encephalomyelitis model of demyelination/remyelination after exposure of mice to the neurotoxic agent cuprizone. We show that demyelination in response to cuprizone is delayed in mice lacking the binding chain of IFNgamma receptor. In addition, IFNgammaR(-/-) mice exhibited an accelerated remyelination process after cuprizone was removed from the diet. Our results also indicate that the levels of IFNgamma were able to modulate the microglia/macrophage recruitment to the demyelinating areas. Moreover, the accelerated regenerative response showed by the IFNgammaR(-/-) mice was associated with a more efficient recruitment of oligodendrocyte precursor cells in the demyelinated areas. In conclusion, this study suggests that IFNgamma regulates the development and resolution of the demyelinating syndrome and may be associated with toxic effects on both mature oligodendrocytes and oligodendrocyte precursor cells.  (+info)

Endogenous cell repair of chronic demyelination. (18/102)

In multiple sclerosis lesions, remyelination typically fails with repeated or chronic demyelinating episodes and results in neurologic disability. Acute demyelination models in rodents typically exhibit robust spontaneous remyelination that prevents appropriate evaluation of strategies for improving conditions of insufficient remyelination. In the current study, we used a mouse model of chronic demyelination induced by continuous ingestion of 0.2% cuprizone for 12 weeks. This chronic process depleted the oligodendrocyte progenitor population and impaired oligodendrocyte regeneration. Remyelination remained limited after removal of cuprizone from the diet. Fibroblast growth factor 2 (FGF2) expression was persistently increased in the corpus callosum of chronically demyelinated mice as compared with nonlesioned mice. We used FGF2 mice to determine whether removal of endogenous FGF2 promoted remyelination of chronically demyelinated areas. Wild-type and FGF2 mice exhibited similar demyelination during chronic cuprizone treatment. Importantly, in contrast to wild-type mice, the FGF2 mice spontaneously remyelinated completely during the recovery period after chronic demyelination. Increased remyelination in FGF2 mice correlated with enhanced oligodendroglial regeneration. FGF2 genotype did not alter the density of oligodendrocyte progenitor cells or proliferating cells after chronic demyelination. These findings indicate that attenuating FGF2 created a sufficiently permissive lesion environment for endogenous cells to effectively remyelinate viable axons even after chronic demyelination.  (+info)

Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. (19/102)

Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that endogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligodendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cuprizone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.  (+info)

A novel fluorescent probe that is brain permeable and selectively binds to myelin. (20/102)

Myelin is a multilayered glial cell membrane that forms segmented sheaths around large-caliber axons of both the central nervous system (CNS) and peripheral nervous system (PNS). Myelin covering insures rapid and efficient transmission of nerve impulses. Direct visual assessment of local changes of myelin content in vivo could greatly facilitate diagnosis and therapeutic treatments of myelin-related diseases. Current histologic probes for the visualization of myelin are based on antibodies or charged histochemical reagents that do not enter the brain. We have developed a series of chemical compounds including (E,E)-1,4-bis(4'-aminostyryl)-2-dimethoxy-benzene termed BDB and the subject of this report, which readily penetrates the blood-brain barrier and selectively binds to the myelin sheath in brain. BDB selectively stains intact myelinated regions in wild-type mouse brain, which allows for delineation of cuprizone-induced demyelinating lesions in mouse brain. BDB can be injected IV into the brain and selectively detect demyelinating lesions in cuprizone-treated mice in situ. These studies justified further investigation of BDB as a potential myelin-imaging probe to monitor myelin pathology in vivo.  (+info)

Microglial recruitment, activation, and proliferation in response to primary demyelination. (21/102)

We have characterized the cellular response to demyelination/remyelination in the central nervous system using the toxin cuprizone, which causes reproducible demyelination in the corpus callosum. Microglia were distinguished from macrophages by relative CD45 expression (CD45(dim)) using flow cytometry. Their expansion occurred rapidly and substantially outnumbered infiltrating macrophages and T cells throughout the course of cuprizone treatment. We used bromodeoxyuridine incorporation and bone marrow chimeras to show that both proliferation and immigration from blood accounted for increased microglial numbers. Microglia adopted an activated phenotype during demyelination, up-regulating major histocompatibility class I and B7.2/CD86. A subpopulation of CD45(dim-high) microglia that expressed reduced levels of CD11b emerged during demyelination. These microglia expressed CD11c and were potent antigen-presenting cells in vitro. T cells were recruited to the demyelinated corpus callosum but did not appear to be activated. Our study highlights the role of microglia as a heterogeneous population of cells in primary demyelination, with the capacity to present antigen, proliferate, and migrate into demyelinated areas.  (+info)

Effects of acute and repeated exposure to lipopolysaccharide on cytokine and corticosterone production during remyelination. (22/102)

Chronic exposure to the copper-chelating agent, cuprizone (CPZ), is an increasingly popular model for producing demyelination. More importantly, cessation of cuprizone exposure allows for full remyelination, which represents a window of opportunity for determining the influence of environmental factors on regenerative processes. In the present study, CPZ-treated animals were assessed for functional status of systemic and central cytokine responsiveness to LPS, as well as assessment for signs of body weight changes. Exposure of male C57BL/6J mice to 5 weeks of 0.2% CPZ in the diet was optimal in producing demyelination and microglial activation, as measured by myelin basic protein, CD11b, and CD45 immunohistochemistry. Acute challenge with LPS at the end of 5 weeks CPZ treatment did not alter IL-1beta, IL-6, nor TNFalpha responses in the spleen and corpus callosum. Similarly, repeated exposure to LPS during the remyelination phase (CPZ removal) did not influence these measures to LPS. Plasma corticosterone was unaffected following acute challenge of CPZ-pretreated animals, but after repeated LPS treatment, there was a significant augmentation of the corticosterone response in CPZ-pretreated mice. Interestingly, the basal concentration of IL-1beta in the corpus callosum of CPZ treated animals was significantly increased, which was in keeping with the increase in activated microglial cells. In conclusion, the cuprizone model of demyelination and remyelination does not appear to influence the systemic nor central IL-1, IL-6, and TNF responses to acute nor repeated LPS. This opens up the possibility for studying the contribution of systemic inflammatory processes on remyelination after cessation of CPZ treatment.  (+info)

Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. (23/102)

Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.  (+info)

Platelet-derived growth factor promotes repair of chronically demyelinated white matter. (24/102)

In multiple sclerosis, remyelination becomes limited after repeated or prolonged episodes of demyelination. To test the effect of platelet-derived growth factor-A (PDGF-A) in recovery from chronic demyelination we induced corpus callosum demyelination using cuprizone treatment in hPDGF-A transgenic (tg) mice with the human PDGF-A gene under control of an astrocyte-specific promoter. After chronic demyelination and removal of cuprizone from the diet, remyelination and oligodendrocyte density improved significantly in hPDGF-A tg mice compared with wild-type mice. In hPDGF-A tg mice, oligodendrocyte progenitor density and proliferation values were increased in the corpus callosum during acute demyelination but not during chronic demyelination or the subsequent recovery period, compared with hPDGF-A tg mice without cuprizone or to treatment-matched wild-type mice. Proliferation within the subventricular zone and subcallosal zone was elevated throughout cuprizone treatment but was not different between hPDGF-A tg and wild-type mice. Importantly, hPDGF-A tg mice had reduced apoptosis in the corpus callosum during the recovery period after chronic demyelination. Therefore, PDGF-A may support oligodendrocyte generation and survival to promote remyelination of chronic lesions. Furthermore, preventing oligodendrocyte apoptosis may be important not only during active demyelination but also for supporting the generation of new oligodendrocytes to remyelinate chronic lesions.  (+info)