Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. (9/4091)

Plasmin is processed in the conditioned medium of HT1080 fibrosarcoma cells producing fragments with the domain structures of the angiogenesis inhibitor, angiostatin, and microplasmin. Angiostatin consists of kringle domains 1-4 and part of kringle 5, while microplasmin consists of the remainder of kringle 5 and the serine proteinase domain. Our findings indicate that formation of angiostatin/microplasmin involves reduction of plasmin by a plasmin reductase followed by proteolysis of the reduced enzyme. We present evidence that the Cys461-Cys540 and Cys511-Cys535 disulfide bonds in kringle 5 of plasmin were reduced by plasmin reductase. Plasmin reductase activity was secreted by HT1080 and Chinese hamster ovary cells and the human mammary carcinoma cell lines MCF-7, MDA231, and BT20 but not by the monocyte/macrophage cell line THP-1. Neither primary foreskin fibroblasts, blood monocyte/macrophages, nor macrovascular or microvascular endothelial cells secreted detectable plasmin reductase. In contrast, cultured bovine and rat vascular smooth muscle cells secreted small but reproducible levels of plasmin reductase. Reduction of the kringle 5 disulfide bonds triggered cleavage at either Arg529-Lys530 or two other positions C-terminal of Cys461 in kringle 5 by a serine proteinase. Plasmin autoproteolysis could account for the cleavage, although another proteinase was mostly responsible in HT1080 conditioned medium. Three serine proteinases with apparent Mr of 70, 50, and 39 were purified from HT1080 conditioned medium, one or more of which could contribute to proteolysis of reduced plasmin.  (+info)

Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. (10/4091)

Pramipexole (PPX) is a full intrinsic activity, direct-acting dopamine (DA) agonist possessing 7-fold higher affinity for D3 than for D2 receptors. It also is a potent antioxidant. PPX was previously shown to be neuroprotective because it dose dependently attenuated the DA neuron loss produced by levodopa in mesencephalic cultures. Several different drugs with properties similar to PPX were studied here to better understand the mechanism or mechanisms responsible for this neuroprotective effect. The D3-preferring agonist 7-hydroxy-diphenylaminotetralin (7-OH-DPAT) and the D3 antagonist U99194, respectively, increased and decreased the neuroprotective effects of PPX in a dose-dependent fashion. Addition of the selective D2 agonist U95666 or the D2/D3 antagonists domperidone or raclopride did not affect PPX's neuroprotective effect. Interestingly, 7-OH-DPAT by itself did not attenuate the DA neuron loss produced by levodopa. However, when 7-OH-DPAT was combined with a low dose of the antioxidants U101033E or alpha-tocopherol, the toxic effects of levodopa were attenuated. Similar results were observed when the D3-preferring agonist PD128, 907 was studied. In addition, media conditioned by exposure of mesencephalic cultures incubated with all D3-preferring agonists studied was shown to enhance the growth of DA neurons in freshly harvested recipient cultures implicating a D3-mediated trophic activity in the neuroprotective effect. These data suggest that PPX's neuroprotective actions in the levodopa toxicity model are a consequence of its combined actions as a D3 receptor agonist and an antioxidant.  (+info)

Cyclosporin exerts a direct fibrogenic effect on human tubulointerstitial cells: roles of insulin-like growth factor I, transforming growth factor beta1, and platelet-derived growth factor. (11/4091)

To assess the direct fibrogenic effects of cyclosporin A (CyA) on the human tubulointerstitium, primary cultures of human renal proximal tubule cells (PTC) and renal cortical fibroblasts (CF) were incubated for 24 h with various concentrations of CyA. Cytotoxicity was confirmed in both cell populations by dose-dependent inhibition of thymidine incorporation, viability, and PTC apical sodium-hydrogen exchange activity (ethylisopropylamiloride-sensitive apical 22Na+ uptake). Compared with controls, both 500 and 1000 ng/ml CyA significantly stimulated CF collagen synthesis (proline incorporation 4.6 +/- 0.4, 6.5 +/- 0.8, and 7.1 +/- 1.0%, respectively; p <.05) and inhibited matrix metalloproteinase-2 (100%, 85.7 +/- 10.0%, and 38.8 +/- 9.2%) and matrix metalloproteinase-9 activity (100%, 110.6 +/- 19.0%, and 49.9 +/- 12.8%). CyA did not affect CF secretion of transforming growth factor beta1, but markedly stimulated insulin-like growth factor-I (IGF-I) secretion and inhibited secretion of both IGF-I binding protein-(IGFBP)-3 and IGFBP-2. CyA-induced CF collagen synthesis was abrogated by 5 microgram/ml anti-IGF-I receptor antibody, but not by 5 microgram/ml murine nonimmune globulin. Increasing concentrations of CyA progressively augmented PTC secretion of the fibrogenic cytokines transforming growth factor-beta1 and platelet-derived growth factor. These results indicate that clinically relevant concentrations of CyA are directly toxic to PTC and CF, irrespective of hemodynamic effects, and promote interstitial fibrosis by inhibiting matrix degradation and stimulating cortical fibroblast collagen synthesis via induction of autocrine IGF-I action. The latter effect may be further accentuated by the ability of CyA to augment secretion of transforming growth factor beta1 and platelet-derived growth factor by PTCs.  (+info)

Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. (12/4091)

The factor-independent Dami/HEL and Meg-01 and factor-dependent Mo7e leukemic cell lines were used as models to investigate JAK/STAT signal transduction pathways in leukemic cell proliferation. Although Dami/HEL and Meg-01 cell proliferation in vitro was independent of and unresponsive to exogenous cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), and tumor necrosis factor-alpha (TNF-alpha), the growth of Mo7e cells was dependent on hematopoietic growth factors. When these cell lines were cultured in medium without cytokines, a constitutively activated STAT-like DNA-binding factor was detected in nuclear extracts from both Dami/HEL and Meg-01 cells. However, the STAT-like factor was not detectable in untreated Mo7e cells, but was activated transiently in Mo7e cells in response to cytokine treatments. The constitutively activated and cytokine-induced STAT-like DNA-binding factor in these three cell lines was identified as STAT5 by oligonucleotide competition gel mobility assays and by specific anti-STAT antibody gel supershift assays. Constitutive activation of JAK2 also was detected in the factor-independent cell lines, but not in Mo7e cells without cytokine exposure. Meg-01 cells express a p185 BCR/ABL oncogene, which may be responsible for the constitutive activation of STAT5. Dami/HEL cells do not express the BCR/ABL oncogene, but increased constitutive phosphorylation of Raf-1 oncoprotein was detected. In cytokine bioassays using growth factor-dependent Mo7e and TF-1 cells as targets, conditioned media from Dami/HEL and Meg-01 cells did not show stimulatory effects on cell proliferation. Our results indicate that the constitutive activation of JAK2/STAT5 correlates with the factor-independent growth of Dami/HEL and Meg-01 cells. The constitutive activation of JAK2/STAT5 in Dami/HEL cells is triggered by a mechanism other than autocrine cytokines or the BCR/ABL oncoprotein.  (+info)

Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. (13/4091)

Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.  (+info)

Changes in the fibrinolytic components of cultured human umbilical vein endothelial cells induced by endotoxin, tumor necrosis factor-alpha and interleukin-1alpha. (14/4091)

BACKGROUND AND OBJECTIVE: Vascular fibrinolysis, a major natural defense mechanism against thrombosis, is a highly regulated process. The aim of this study was to evaluate the effect of endotoxin, tumor necrosis factor-alpha (TNFalpha) and interleukin-1alpha (IL-1alpha), on the fibrinolytic potential of cultured human umbilical vein endothelial cells (HUVEC). DESIGN AND METHODS: Samples of stimulated conditioned media were collected over a period of 24 hours to determine: plasminogen activator (PA) and plasminogen activator inhibitor (PAI) activity, PAI-1 mRNA, tissue-type plasminogen activator (t-PA) antigen and urokinase-type plasminogen activator (u-PA) antigen. RESULTS: Similar changes were observed after endotoxin and cytokine stimulation: there was a significant increase of PAI activity (p<0.01), starting at 6 hours, which remained 24 hours after stimulation. PAI-1 mRNA also showed an important rise with these agents, although cytokines induced an earlier and more intense inhibitor response (up to 6-fold increase). PA activity increased significantly at 6 hours (p<0.01) to drop at 24 hours and was mainly related to the presence of u-PA. INTERPRETATION AND CONCLUSIONS: We conclude that endotoxin,+TNFalpha and IL-1alpha induce profound alterations in the fibrinolytic potential of HUVEC, characterized by an initial rise of activators (u-PA) followed by a strong increase of PAI-1. These changes may be of pathophysiologic significance for thrombosis and inflammatory reactions.  (+info)

Effects of Aspergillus fumigatus culture filtrate on antifungal activity of human phagocytes in vitro. (15/4091)

BACKGROUND: Aspergillus fumigatus can colonise the airways and the lungs with localised underlying conditions and occasionally invade the surrounding lung tissues even in subjects without systemic predisposing factors, presumably by escaping the local host defences. The aim of this study was to investigate the effects of A fumigatus culture filtrate (ACF) on the activities of human phagocytes--inhibition of germination of A fumigatus spores by alveolar macrophages (AMs) and hyphal damage by polymorphonuclear leucocytes (PMNs)--which are the critical host defences against A fumigatus. METHODS: Spores were incubated with AMs at a ratio of 1:1 in a medium containing different concentrations of ACF for 10 hours at 37 degrees C. Spore germination was visualised with light microscopy and the inhibition rate was calculated. The percentage of hyphal damage caused by PMNs pretreated with various concentrations of ACF was measured by a colorimetric tetrazolium metabolic assay. RESULTS: The inhibition rate of spore germination by AMs cultured with medium alone (control) was 90 (0.8)% whereas that by AMs cultured with the medium containing 10% ACF was significantly (p < 0.05) reduced to 41.7 (4.6)%. ACF suppressed the inhibition of spore germination in a dose dependent manner without altering the phagocytosing activity against the spores. The percentage of hyphal damage caused by PMNs pretreated with medium-199 (control) was 78.1 (2.3)% compared with 65.3 (2.8)% when PMNs were pretreated with 50% ACF (p < 0.05). CONCLUSIONS: A fumigatus releases biologically active substance(s) which suppress the inhibition of spore germination by AMs and also suppress PMN mediated hyphal damage, and thus may contribute to the pathogenicity of this fungus.  (+info)

Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. (16/4091)

Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. We now report that plasma membrane disruption (PMD) is quantitatively correlated on a cell-by-cell basis with fos protein levels expressed in mechanically injured monolayers. When the population of PMD-affected cells in injured monolayers was selectively prevented from responding to the injury, the fos response was completely ablated, demonstrating that PMD is a requisite event. This PMD-dependent expression of fos protein did not require cell exposure to cues inherent in release from cell-cell contact inhibition or presented by denuded substratum, because it also occurred in subconfluent monolayers. Fos expression also could not be explained by factors released through PMD, because cell injury conditioned medium failed to elicit fos expression. Translocation of the transcription factor NF-kappaB into the nucleus may also be regulated by PMD, based on a quantitative correlation similar to that found with fos. We propose that PMD, by allowing a flux of normally impermeant molecules across the plasma membrane, mediates a previously unrecognized form of cell mechanotransduction. PMD may thereby lead to cell growth or hypertrophy responses such as those that are present normally in mechanically stressed skeletal muscle and pathologically in the cardiovascular system.  (+info)