Polymorphism in a cyclic parthenogenetic species: Simocephalus serrulatus. (1/744)

A survey of sixteen isozyme loci using electrophoretic techniques was conducted for three isolated natural populations and one laboratory population of the cyclic parthenogenetic species, Simocephalus serrulatus. The proportion of polymorphic loci (33%-60%) and the average number of heterozygous loci per individual (6%-23%) in the three natural populations were found to be comparable to those found in most sexually reproducing organisms. Detailed analyses were made for one of these populations using five polymorphic loci. The results indicated that (1) seasonal changes in genotypic frequencies took place, (2) apomicitic parthenogenesis does not lead to genetic homogeneity, and (3) marked gametic disequilibrium at these five loci was present in the population, indicating that selection acted on coadapted groups of genes.  (+info)

Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. (2/744)

Homeotic genes are known to be involved in patterning morphological structures along the antero-posterior axis of insects and vertebrates. Because of their important roles in development, changes in the function and expression patterns of homeotic genes may have played a major role in the evolution of different body plans. For example, it has been proposed that during the evolution of several crustacean lineages, changes in the expression patterns of the homeotic genes Ultrabithorax and abdominal-A have played a role in transformation of the anterior thoracic appendages into mouthparts termed maxillipeds. This homeotic-like transformation is recapitulated at the late stages of the direct embryonic development of the crustacean Porcellio scaber (Oniscidea, Isopoda). Interestingly, this morphological change is associated with apparent novelties both in the transcriptional and post-transcriptional regulation of the Porcellio scaber ortholog of the Drosophila homeotic gene, Sex combs reduced (Scr). Specifically, we find that Scr mRNA is present in the second maxillary segment and the first pair of thoracic legs (T1) in early embryos, whereas protein accumulates only in the second maxillae. In later stages, however, high levels of SCR appear in the T1 legs, which correlates temporally with the transformation of these appendages into maxillipeds. Our observations provide further insight into the process of the homeotic leg-to-maxilliped transformation in the evolution of crustaceans and suggest a novel regulatory mechanism for this process in this group of arthropods.  (+info)

Changes in physiological parameters and feeding behaviour of Atlantic salmon Salmo salar infected with sea lice Lepeophtheirus salmonis. (3/744)

Atlantic salmon Salmo salar L. artificially infected with salmon lice Lepeophtheirus salmonis (Kroyer 1837) recovered from detrimental physiological changes and skin damage induced by preadult lice as the parasites matured. Growth rates of Atlantic salmon remained unaffected by lice infection, but food consumption decreased with increasing feeding and movement of the lice prior to and post-mating, correlating with the appearance of head erosions and detrimental changes in physiological integrity. Food consumption of the fish increased as the lice moulted to the adult stage and gravid female lice settled in a posterior location on the fish, subsequently reducing the impact of infection and allowing recovery of the skin damage. However, the impact of preadults was limited, as the decrease in food consumption of fish at 21 d post-infection had no effect on either the specific growth rate or condition factor of the fish. Furthermore, the intensity of lice infections at each of the sample days was not correlated with food consumption, specific growth rate or any of the haematological or physiological parameters measured, either before or after infection, indicating that lice intensity was independent of social dominance/subordinance. This work has provided the first evidence that infected fish can recover from the detrimental changes caused by lice infection, even when they are still infected with lice. If fish can survive the preadult stage of lice, then the mortal impact of lice infections is greatly reduced.  (+info)

Extent of gill pathology in the toadfish Tetractenos hamiltoni caused by Naobranchia variabilis (Copepoda: Naobranchiidae). (4/744)

Sanguinivorous Naobranchia variabilis prefer the first gill arch, external hemibranch and anterior end of the gill arch. The smallest N. variabilis observed attached to fish by a thin filament which connects fused tips of second maxillae to a 'plug' inserted into the gill tissue. Second maxillae enlarge to encircle and increasingly compress the gill filament, which results in a thin layer of epithelium and connective tissue overlying the cartilaginous supporting bar. Early juveniles cause little tissue proliferation, but the extent of proliferated epithelial and connective tissue (PR) adjacent to the maxillae increases from late juveniles to subadult and adult copepods. Most variation in length of gill filament damage (PL, proliferated and compressed tissue) among age classes is explained by maxilla length (ML, length of compressed gill filament); adult trunk width (TRW) explains an extra, small amount of variation, but not trunk length (TRL) or total fish length (TL). Most variation in ML is explained by TRW of adults, subadults and late juveniles, and TRL of early juveniles. PR is explained by TRW for adults, but by ML for other ages. These patterns are due to elongation of the juvenile trunk during growth and lateral expansion of adult egg pouches during maturation. Up to 38 N. variabilis, average (avg.) = 9.3, infected individual Tetractenos hamiltoni and damaged up to 3.4% (avg. 0.72%) of total filament length and 8.6% (avg. 2.1%) of gill filaments per fish.  (+info)

Regional specification during embryogenesis in the inarticulate brachiopod Discinisca. (5/744)

The process of embryogenesis is described for the inarticulate brachiopod Discinisca strigata of the family Discinidae. A fate map has been constructed for the early embryo. The animal half of the egg forms the dorsal ectoderm of the apical and mantle lobes. The vegetal half forms mesoderm and endoderm and is the site of gastrulation; it also forms the ectoderm of the ventral regions of the apical and mantle lobes of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg along the future plane of bilateral symmetry of the larva. The timing of regional specification in these embryos was examined by isolating animal, vegetal, or lateral regions at different times from the 2-cell stage through gastrulation. Animal halves isolated at the 8-cell and blastula stages formed an epithelial vesicle and did not gastrulate. When these halves were isolated from blastulae they formed the cell types typical of apical and mantle lobes. Vegetal halves isolated at all stages gastrulated and formed a more or less normal larva; the only defect these larvae had was the lack of an apical tuft, which normally forms from cells at the animal pole of the embryo. When lateral isolates were created at all developmental stages, these halves gastrulated. Cuts which separated presumptive anterior and posterior regions generated isolates at the 4-cell and blastula stages that formed essentially normal larvae; however, at the midgastrula stage these halves formed primarily anterior or posterior structures indicating that regional specification had taken place along the anterior-posterior axis. The plane of the first cleavage, which predicts the plane of bilateral symmetry, can be shifted by either changing the cleavage pattern that generates the bilateral 16-cell blastomere configuration or by isolating embryo halves prior to, or during, the 16-cell stage. These results indicate that while the plane of the first cleavage predicts the axis of bilateral symmetry, the axis is not established until the fourth cleavage. The development of Discinisca is compared to development in the inarticulate brachiopod Glottidia of the family Lingulidae and to Phoronis in the phylum Phoronida.  (+info)

Natural copepods are superior to enriched artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. (6/744)

Replicate groups of halibut larvae were fed to d 71 post-first feeding (PFF) either the marine copepod, Eurytemora velox, or Artemia nauplii doubly enriched with the marine chromist or golden algae, Schizochytrium sp., (Algamac 2000) and a commercial oil emulsion (SuperSelco). The fatty acid compositions of eyes, brains and livers from larvae fed the two diets were measured, and indices of growth, eye migration and skin pigmentation were recorded along with histological examinations of eye and liver. The docosahexaenoic acid [22:6(n-3); DHA]/eicosapentaenoic acid [20:5(n-3); EPA] ratios in Artemia nauplii enriched with the SuperSelco and Algamac 2000 were 0.4 and 1.0, respectively. The E. velox copepods were divided into two size ranges (125-250 and 250-400 microm) with the smaller size range containing the highest level of (n-3) highly unsaturated fatty acids (HUFA). The DHA/EPA ratios for the two size ranges of copepods were 2.0 and 0.9, respectively. The total lipids of eyes, brains and livers of larvae fed copepods had higher levels of DHA and lower levels of EPA than those of larvae fed enriched Artemia. The percentage of survival of the halibut larvae was significantly higher when copepods rather than enriched Artemia nauplii were fed, but larval specific growth rates did not differ. The indices of eye migration were high and not significantly different in larvae fed the two diets, but the percentage of larvae undergoing successful metamorphosis (complete eye migration and dorsal pigmentation) was higher in larvae fed copepods (40%) than in larvae fed enriched Artemia (4%). The rod/cone ratios in histological sections of the retina were 2.5 +/- 0.7 in larvae fed copepods and 1.3 +/- 0.6 in larvae fed enriched Artemia (P < 0.01). Histological examination of the livers and intestines of the larvae were consistent with better assimilation of lipid from copepods than lipid from Artemia nauplii up to 46 d post-first feeding. Thus, marine copepods are superior to enriched Artemia as food for halibut larvae in terms of survival, eye development and pigmentation, and this superiority can be related to the level of DHA in the feed.  (+info)

Polymorphism and evolution of collagenolytic serine protease genes in crustaceans. (7/744)

Two genomic DNA fragments encoding crustacean collagenolytic serine protease genes show coding fragments that span 1522-1526 base pairs and contain seven exons encoding the complete amino acid sequence of two enzymes, CHYA and CHYB. As in serine protease genes from other organisms, the region coding for the residues around the active site is split by two introns. Although the introns differ from those of other organisms in size and nucleotide sequence, their number and location are more or less the same as found in mammalian chymotrypsin or elastase genes that evolved lately, but different for trypsin genes. Meanwhile, the junction that occurs between the propeptide and the maturation site is only found in the shrimp genes. This is also the case for the junction located 13 amino acids after the active site aspartic acid in these genes. Between 40 and 50 copies of the genes are reported by Southern analysis. Seven different genes within ChyA Pv family present 0-6% base changes, whereas five different genes belonging to ChyB Pv family show changes of up to 27% in the short studied portion of exon 4. This last family presents a mosaic organization of the coding parts, which are also expressed in the hepatopancreas of the shrimp as the variant PVC5 cDNA.  (+info)

The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. (8/744)

Two glycoforms (AH1 and AH2) of androgenic hormone, and its corresponding hormone precursor derived from HPLC-purified androgenic gland extract from the woodlouse Armadillidium vulgare were fully characterized by microsequencing and mass spectrometry. The amino-acid sequences of the two glycoforms were identical; they consist of two peptide chains, A and B, of 29 and 44 amino acids, respectively, with chain A carrying one N-glycosylated moiety on Asn18. The two chains are linked by two disulfide bridges. Glycoforms were only differentiated by the size and heterogeneity of the glycan chain. The androgenic hormone precursor (16.5 kDa) was shown to contain the sequence of chains A and B from the androgenic hormone, connected by a C-peptide (50 amino acids). These results were confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis performed on a single hypertrophied androgenic gland. When injected into young females, both glycoforms of the androgenic hormone were able to override genetic sex-determination. In invertebrates, there is no other example where sex-differentiation is controlled by a protein hormone that is not synthesized by the gonads but by a special gland. A functional comparison with two other hormones which are believed to play a role in sex determination, i.e. ecdysone in insects and anti-Mullerian hormone in mammals, is presented. Work is in progress to clone and characterize the gene encoding androgenic hormone, moreover special attention is devoted to its regulatory regions, putative targets for the Wolbachia action.  (+info)