Reversal in the immunodominance hierarchy in secondary CD8+ T cell responses to influenza A virus: roles for cross-presentation and lysis-independent immunodomination. (9/459)

Immunodominance is a central feature of CD8+ T cell (TCD8+) responses to pathogens, transplants, and tumors. Determinants occupy a stable position in an immunodominance hierarchy (alpha-, beta-, etc.) defined by the frequencies of responding TCD8+. In this paper, we study the mechanistic basis for place-swapping between alpha- (acid polymerase (PA)(224-233)) and beta-determinants (nuclear protein 366-374) in primary vs secondary anti-influenza A virus (IAV) responses in mice. This phenomena was recently correlated with the inability of IAV-infected nondendritic cells (DCs) to generate PA(224-233), and it was proposed that secondary TCD8+ are principally activated by IAV-infected epithelial cells, while primary TCD8+ are activated by IAV-infected DCs. In this study, we show that the inability of non-DCs to generate PA(224-232) is relative rather than absolute, and that the preferential use of cross-priming in secondary anti-IAV responses can also account for the revised hierarchy. We further show that immunodomination of PA(224-233)-specific TCD8+ by nucleoprotein 366-374-specific TCD8+ plays a critical role in the phenomena, and that this is unlikely to be mediated by TCD8+ lysis of APCs or other cells.  (+info)

Exogenous antigens are processed through the endoplasmic reticulum-associated degradation (ERAD) in cross-presentation by dendritic cells. (10/459)

Antigen cross-presentation is critical in infectious and tumor immunity where cytotoxic T lymphocytes are induced by dendritic cells specifically equipped with cellular machineries to present exogenous antigens with major histocompatibility complex (MHC) class I molecules. To examine molecular mechanisms of antigen cross-presentation, we employed as a model system a murine dendritic cell line DC2.4 capable of presenting soluble antigens such as ovalbumin (OVA) with MHC class I. Here, we demonstrate that exogenously added OVA is accumulated in the endoplasmic reticulum (ER) and late endosomes followed by retrograde transport to the cytoplasm through the Sec61 transporter complexes, and that CHIP functions as an E3 ubiquitin-ligase for OVA degradation by proteasomes. This mechanism is essentially the same as that known as the ER-associated degradation (ERAD) in the quality control of secretary and membrane proteins.  (+info)

Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-alpha/beta. (11/459)

Toll-like receptors (TLR) are believed to play a major role in the recognition of invading organisms, although their ability to shape immune responses is not completely understood. Our aim was to investigate in vivo the effect of different TLR stimuli on the generation of antibody responses and the induction of CD8+ T-cell cross-priming after immunization with soluble protein antigens. While all TLR agonists tested elicited the production of immunomodulatory cytokines, marked differences were observed in their ability to stimulate antigen-specific immune responses. Zymosan, poly(I:C) and CpG DNA, which signal through TLR2/6, 3 and 9, respectively, were found to strongly induce the production of IgG2a antibodies, whereas R-848 (TLR7) and LPS (TLR4) did so much more weakly. In contrast, LPS, poly(I:C) and CpG DNA, but not zymosan, induced functional CD8+ T-cell responses against OVA; peptidoglycan (TLR2/?) and R-848 were also ineffective in stimulating cross-priming. Experiments using IFN-alpha/beta R-deficient mice showed that the induction of cross-priming by LPS and poly(I:C) was abrogated in the absence of IFN-alpha/beta signalling, and induction by CpG DNA was greatly reduced. Overall, our results identify LPS as another TLR agonist that is able to generate functional cross-priming against a soluble protein antigen. In addition, our results demonstrate that the ability of TLR stimuli to initiate CD8+ T-cell responses against soluble protein antigens is largely dependent on the IFN-alpha/beta signalling pathway.  (+info)

Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. (12/459)

IL-15 is critical for generation of multiple lymphoid subsets. Recent data have demonstrated a unique aspect of responses to IL-15, in that cells bearing the IL-15Ralpha chain can bind soluble IL-15 and "transpresent" the cytokine to other cells, allowing the latter to respond to IL-15. However, it is unclear whether IL-15 is normally secreted and then becomes bound to surface IL-15Ralpha on bystander cells, or whether transpresentation is mediated by the same cells which synthesize IL-15. Using mixed bone marrow chimeric mice, we present evidence for the latter model, showing that development of NK cells and memory phenotype CD8 T cells necessitates that both IL-15 and IL-15Ralpha be expressed by the same population of cells. These data argue that soluble forms of IL-15 are irrelevant for physiological responses to this cytokine, and the implications of this finding are discussed.  (+info)

Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. (13/459)

The fate of naive CD8(+) T cells is determined by the environment in which they encounter MHC class I presented peptide Ags. The manner in which tumor Ags are presented is a longstanding matter of debate. Ag presentation might be mediated by tumor cells in tumor draining lymph nodes or via cross-presentation by professional APC. Either pathway is insufficient to elicit protective antitumor immunity. We now demonstrate using a syngeneic mouse tumor model, expressing an Ag derived from the early region 1A of human adenovirus type 5, that the inadequate nature of the antitumor CTL response is not due to direct Ag presentation by the tumor cells, but results from presentation of tumor-derived Ag by nonactivated CD11c(+) APC. Although this event results in division of naive CTL in tumor draining lymph nodes, it does not establish a productive immune response. Treatment of tumor-bearing mice with dendritic cell-stimulating agonistic anti-CD40 mAb resulted in systemic efflux of CTL with robust effector function capable to eradicate established tumors. For efficacy of anti-CD40 treatment, CD40 ligation of host APC is required because adoptive transfer of CD40-proficient tumor-specific TCR transgenic CTL into CD40-deficient tumor-bearing mice did not lead to productive antitumor immunity after CD40 triggering in vivo. CpG and detoxified LPS (MPL) acted similarly as agonistic anti-CD40 mAb with respect to CD8(+) CTL efflux and tumor eradication. Together these results indicate that dendritic cells, depending on their activation state, orchestrate the outcome of CTL-mediated immunity against tumors, leading either to an ineffective immune response or potent antitumor immunity.  (+info)

Multiple intracellular routes in the cross-presentation of a soluble protein by murine dendritic cells. (14/459)

Soluble heat shock fusion proteins (Hsfp) stimulate mice to produce CD8+ CTL, indicating that these proteins are cross-presented by dendritic cells (DC) to naive CD8 T cells. We report that cross-presentation of these proteins depends upon their binding to DC receptors, likely belonging to the scavenger receptor superfamily. Hsfp entered DC by receptor-mediated endocytosis that was either inhibitable by cytochalasin D or not inhibitable, depending upon aggregation state and time. Most endocytosed Hsfp was transported to lysosomes, but not the small cross-presented fraction that exited early from the endocytic pathway and required access to proteasomes and TAP. Naive CD8 T cell (2C and OT-I) responses to DC incubated with Hsfp at 1 microM were matched by incubating DC with cognate octapeptides at 1-10 pM, indicating that display of very few class I MHC-peptide complexes per DC can be sufficient for cross-presentation. With an Hsfp (heat shock protein-OVA) having peptide sequences for both CD4+ (OT-II) and CD8+ (OT-I) cells, the CD4 cells responded far more vigorously than the CD8 cells and many more class II MHC-peptide than class I MHC-peptide complexes were displayed.  (+info)

Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. (15/459)

HSV efficiently infects dendritic cells (DCs) in their immature state and induces down-regulation of costimulatory and adhesion molecules. As in mice, HSV infection of human DCs also leads to their rapid and progressive apoptosis, and we show that both early and late viral proteins contribute to its induction. Because topical HSV infection is confined to the epidermis, Langerhans cells are expected to be the major APCs in draining lymph nodes. However, recent observations in murine models show T cell activation to be mediated by nonepidermal DC subsets, suggesting cross-presentation of viral Ag. In this study we provide an explanation for this phenomenon, demonstrating that HSV-infected apoptotic DCs are readily phagocytosed by uninfected bystander DCs, which, in turn, stimulate virus-specific CD8+ T cell clones.  (+info)

Toll-like receptor 3 promotes cross-priming to virus-infected cells. (16/459)

Cross-presentation of cell-associated antigens plays an important role in regulating CD8+ T cell responses to proteins that are not expressed by antigen-presenting cells (APCs). Dendritic cells are the principal cross-presenting APCs in vivo and much progress has been made in elucidating the pathways that allow dendritic cells to capture and process cellular material. However, little is known about the signals that determine whether such presentation ultimately results in a cytotoxic T cell (CTL) response (cross-priming) or in CD8+ T cell inactivation (cross-tolerance). Here we describe a mechanism that promotes cross-priming during viral infections. We show that murine CD8alpha+ dendritic cells are activated by double-stranded (ds)RNA present in virally infected cells but absent from uninfected cells. Dendritic cell activation requires phagocytosis of infected material, followed by signalling through the dsRNA receptor, toll-like receptor 3 (TLR3). Immunization with virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL cross-priming against cell-associated antigens, which is largely dependent on TLR3 expression by antigen-presenting cells. Thus, TLR3 may have evolved to permit cross-priming of CTLs against viruses that do not directly infect dendritic cells.  (+info)