CD8 T cells specific for a donor-derived, self-restricted transplant antigen are nonpathogenic bystanders after vascularized heart transplantation in mice. (49/459)

CD8 T cell cross-priming, an established mechanism of protective antiviral immunity, was originally discovered during studies involving minor transplantation Ags. It is unclear whether or how cross-primed CD8 T cells, reactive to donor-derived, but recipient class I MHC-restricted epitopes, could injure a fully MHC-disparate, vascularized transplant. To address this question we studied host class I MHC-restricted, male transplantation Ag-reactive T cell responses in female recipients of fully MHC-disparate, male heart transplants. Cross-priming to the immune-dominant determinant HYUtyp occurred at low frequency after heart transplantation. CD8 T cell preactivation through immunization with HYUtyp mixed in CFA did not alter the kinetics of acute rejection. Furthermore, neither HYUtyp immunization nor adoptive transfer of HYUtyp-specific TCR-transgenic T cells affected outcome in 1) a model of chronic rejection in the absence of immunosuppression or 2) a model of allograft acceptance induced by costimulatory blockade. The results support the contention that CD8 T cells reactive to host-restricted, but donor-derived, Ags are highly specific and are nonpathogenic bystanders during rejection of MHC-disparate cardiac allografts.  (+info)

Penetratin tandemly linked to a CTL peptide induces anti-tumour T-cell responses via a cross-presentation pathway. (50/459)

Recently there has been increasing evidence to suggest that membrane translocating peptides enter cells by a receptor-dependent pathway. There have been some studies on the mechanism of major histocompatibility complex (MHC) class I presentation of membrane translocating peptides incorporating cytotoxic T lymphocyte epitopes. However, these have been on different cell lines and only a limited number of inhibitors of the antigen presentation pathway were used. Herein, we demonstrate a comprehensive study utilizing a full spectrum of inhibitors to various pathways of MHC class I to elucidate the mechanism of the membrane translocating peptide, penetratin from Antennapedia (Int). It is clear that Int, RQIKIWFQNRRMKWKK when tandemly linked to a cytotoxic T lymphocyte peptide of ovalbumin, SIINFEKL (IntSIIN) is endocytosed via phagocytosis or macropinocytosis by dendritic cells in an ATP-dependent manner and is processed by a proteasome- and tapasin-independent pathway for presentation and loading to MHC class I molecules. In addition, the majority of antigen is taken up by negatively charged receptors. IntSIIN activates T cells in vitro and in vivo and protects mice against challenge with an ovalbumin-expressing tumour.  (+info)

Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. (51/459)

The observation that the T-bet transcription factor allows tissue-specific upregulation of intracellular osteopontin (Opn-i) in plasmacytoid dendritic cells (pDCs) suggests that Opn might contribute to the expression of interferon-alpha (IFN-alpha) in those cells. Here we show that Opn deficiency substantially reduced Toll-like receptor 9 (TLR9)-dependent IFN-alpha responses but spared expression of transcription factor NF-kappaB-dependent proinflammatory cytokines. Shortly after TLR9 engagement, colocalization of Opn-i and the adaptor molecule MyD88 was associated with induction of transcription factor IRF7-dependent IFN-alpha gene expression, whereas deficient expression of Opn-i was associated with defective nuclear translocation of IRF7 in pDCs. The importance of the Opn-IFN-alpha pathway was emphasized by its essential involvement in cross-presentation in vitro and in anti-herpes simplex virus 1 IFN-alpha response in vivo. The finding that Opn-i selectively coupled TLR9 signaling to expression of IFN-alpha but not to that of other proinflammatory cytokines provides new molecular insight into the biology of pDCs.  (+info)

HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. (52/459)

The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.  (+info)

Impact of orthologous melan-A peptide immunizations on the anti-self melan-A/HLA-A2 T cell cross-reactivity. (53/459)

In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.  (+info)

Degeneracy and repertoire of the human HIV-1 Gag p17(77-85) CTL response. (54/459)

CD8+ CTL responses are important for the control of HIV-1 infection. The immunodominant HLA-A2-restricted Gag epitope, SLYNTVATL (SL9), is considered to be a poor immunogen because reactivity to it is rare in acute infection despite its paradoxical dominance in patients with chronic infection. We have previously reported SL9 to be a help-independent epitope in that it primes highly activated CTLs ex vivo from CD8+ T cells of seronegative healthy donors. These CTLs produce sufficient cytokines for extended autocrine proliferation but are sensitive to activation-induced cell death, which may cause them to be eliminated by a proinflammatory cytokine storm. Here we identified an agonist variant of the SL9 peptide, p41 (SLYNTVAAL), by screening a large synthetic combinatorial nonapeptide library with ex vivo-primed SL9-specific T cells. p41 invariably immunized SL9-cross-reactive CTLs from other donors ex vivo and H-2Db beta2m double knockout mice expressing a chimeric HLA-A*0201/H2-Db MHC class I molecule. Parallel human T cell cultures showed p41-specific CTLs to be less fastidious than SL9-CTLs in the level of costimulation required from APCs and the need for exogenous IL-2 to proliferate (help dependent). TCR sequencing revealed that the same clonotype can develop into either help-independent or help-dependent CTLs depending on the peptide used to activate the precursor CD8+ T cells. Although Ag-experienced SL9-T cells from two patients were also sensitive to IL-2-mediated cell death upon restimulation in vitro, the loss of SL9 T cells was minimized with p41. This study suggests that agonist sequences can replace aberrantly immunogenic native epitopes for the rational design of vaccines targeting HIV-1.  (+info)

The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. (55/459)

The mannose receptor (MR) has been implicated in the recognition and clearance of microorganisms and serum glycoproteins. Its endocytic function has been studied extensively using macrophages, although it is expressed by a variety of cell types, including dendritic cells (DC). In this study, we investigated its role in Ag presentation by DC using MR-/- mice. Uptake of the model Ag, soluble OVA, by bone marrow-derived DC and in vitro activation of OVA-specific CD8 T cells (OT-I cells) strictly depended on the MR. In vivo, MR deficiency impaired endocytosis of soluble OVA by DC and concomitant OT-I cell activation. No alterations in the DC subtype composition in MR-/- mice were accountable. Uptake of cell-associated OVA was unaffected by MR deficiency, resulting in unchanged activation of OT-I cells. These findings demonstrate that DC use the MR for endocytosis of a particular Ag type intended for cross-presentation.  (+info)

IL-2 is required for the activation of memory CD8+ T cells via antigen cross-presentation. (56/459)

Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  (+info)