Disodium cromoglycate stabilizes mast cell degranulation while reducing the number of hemoglobin-induced microvascular leaks in rat mesentery. (49/343)

Blood substitutes, such as diaspirin cross-linked Hb (DBBF-Hb), have been considered for use during blood transfusions. Unfortunately, bolus injection of modified Hb has been shown to rapidly increase the leakage of microvessels to plasma albumin. This effect may result from production of excess reactive oxygen species (ROS) and could be linked to the observed increase in degranulated mast cells (DMC). Disodium cromoglycate (cromolyn) stabilizes mast cells and therefore might minimize the venular permeability in the rat mesentery. In 10 anesthetized Sprague-Dawley rats, the mesenteric preparation was continuously suffused with cromolyn while the microvasculature was filled with DBBF-Hb solution (10 mg/ml) for 10 min. Six animals received cromolyn pretreatment [two intravascular injections over 30 min (experiment A)] and four animals received pretreatment with 2% HEPES-buffered saline (HBS)-BSA (experiment B). Two more animals were pretreated with HBS-BSA without DBBF-Hb infusion but with cromolyn suffusion (experiment C). Another set of experiments was performed on five animals without cromolyn suffusion or any pretreatment but with DBBF-Hb infusion (experiment D). All groups then received a 1-min perfusion of FITC-albumin, fixation for 60 min, and microscopic examination. Experiments A and B demonstrated a significant reduction in the number of venular leaks and DMC compared with experiment D, but not in the area of venular leaks. These results suggest mast cell degranulation is not a major contributor to microvascular leakage induced by DBBF-Hb.  (+info)

Mast cells degranulation affects angiogenesis in the rat uterine cervix during pregnancy. (50/343)

During pregnancy, it is essential that sufficient nutrients are supplied by the vascular system to support the dramatic modifications of the rat uterine cervix. Angiogenesis refers to the growth of new blood vessels from pre-existing microcirculation and mast cells have been associated with this process. This study examined the modifications of the vascular compartment and the distribution of mast cells on cervical tissue during pregnancy. Using disodium cromoglycate as a mast cell stabilizer, we determined the effects of the mast cell degranulation on cervical angiogenesis. Mast cell distribution and their degranulation status were evaluated by immunohistochemistry. Endothelial cell proliferation was measured by bromodeoxyuridine incorporation. Vascular areas (absolute and relative) and maturation indices were assessed by quantitative immunohistochemistry of von Willebrand factor and alpha-smooth muscle actin respectively. Mast cells were predominantly observed during the first half of pregnancy in the perivascular zones. The values of bromodeoxyuridine incorporation, absolute vascular area and vascular maturation index exhibited a significant increase throughout pregnancy. All animals that received mast cell stabilizer showed more than 40% of non-degranulated mast cells. Treated rats exhibited a decrease in endothelial proliferation and in relative vascular area; in addition, a large proportion of mature blood vessels was observed, suggesting a diminished level of new vessel formation. The effects of the mast cell stabilizer were sustained beyond the end of treatment. This is the first report that brings evidence that mast cell degranulation could be a necessary process to contribute to the normal angiogenesis of the rat cervix during pregnancy. Further investigations are needed to elucidate the possible implications of abnormal vascular development of the uterine cervix on the physiological process of ripening and parturition.  (+info)

Mast cells and reactive oxygen species in citric acid-induced airway constriction. (51/343)

The noncholinergic airway constriction is mediated by tachykinins, mainly neurokinin A and substance P, and this bronchoconstriction is usually enhanced during inflammatory episodes. We demonstrated previously that reactive oxygen species play an important role in capsaicin-, hyperventilation-, and citric acid (CA) inhalation-induced noncholinergic airway constriction. For understanding cellular involvement, we further investigated the relationship between mast cells, bradykinin (BK), reactive oxygen species, and noncholinergic airway constriction. Sixty-five guinea pigs were divided into seven groups: saline control; CA; BK + CA; cromolyn sodium (CS) + CA; BK + CS + CA; compound 48/80 + CA; and compound 48/80 + BK + CA. CS was used to stabilize mast cells, whereas a secretagogue, compound 48/80, was for the depletion of mast cells. Each animal was anesthetized, cannulated, paralyzed, and ventilated artificially. In control animals, CA aerosol inhalation caused decreases in dynamic compliance and forced expiratory parameters, indicating CA-induced noncholinergic airway constriction. Either CS or compound 48/80 significantly attenuated the CA-induced airway constriction. Also, we detected a significant increase in lucigenin-initiated chemiluminescence counts of the bronchoalveolar lavage sample in the BK + CA group. Furthermore, CA exposure caused an increase in bronchoalveolar lavage substance P level. Either CS or compound 48/80 prevented the above CA-induced increases in chemiluminescence and substance P. These results suggest that mast cells play an important role in CA aerosol inhalation-induced airway constriction via perhaps releasing constricting factors.  (+info)

In vitro and in vivo inhibitory effects of disodium cromoglycate on influenza virus infection. (52/343)

Disodium cromoglycate (DSCG) is one of the safest drugs for the prevention of bronchial asthma and allergic rhinitis attacks. The effect of DSCG on acute upper respiratory tract viral infection is still controversial. Here we investigated DSCG inhibition of influenza virus infection in vivo and in vitro. In vivo effects of DSCG on viral infection were assessed using a murine model of respiratory tract infection. Intranasal administration of DSCG protected mice from death induced by infection with influenza virus A/PR/8/34. We analyzed DSCG anti-viral effects in vitro by either (i) treating cells prior to viral adsorption, (ii) treating cells concurrently with viral adsorption, or (iii) treating cells after viral adsorption. DSCG treatment of cells during or after, but not before, viral adsorption significantly inhibited influenza viral infection, indicating DSCG acts on events late in viral infection. DSCG exerts anti-influenza effect both in vitro and in vivo at the doses compatible with treatment for asthma. DSCG marginally inhibited influenza viral neuraminidase and membrane fusion functions, suggesting that DSCG inhibition of viral neuraminidase and fusion activities may partially mediate this anti-influenza effect. Our results indicate that treatment of patients including children with DSCG may take advantages for prevention from influenza virus infection.  (+info)

Pharmacological stabilization of mast cells abrogates late thrombotic events induced by diesel exhaust particles in hamsters. (53/343)

BACKGROUND: Particulate air pollution is associated with cardiovascular diseases and myocardial infarction (MI). METHODS AND RESULTS: We investigated the relationship between airway inflammation and thrombosis 24 hours after intratracheal (IT) instillation of diesel exhaust particles (DEP; 50 microg/hamster). Mild thrombosis was induced in the femoral vein by endothelial injury, and the consequences of airway inflammation on thrombogenicity were studied via online video microscopy. Lung inflammation and histamine analysis in bronchoalveolar lavage (BAL) and plasma were performed after pretreatment with dexamethasone (DEX) or sodium cromoglycate (SC). DEP induced airway inflammation and histamine release in BAL and in plasma, and increased thrombosis, without elevating plasma von Willebrand factor (vWF) levels. The IT instillation of 400-nm positively charged polystyrene particles (500 microg/hamster), serving as particles that do not penetrate into the circulation, equally produced airway inflammation, histamine release, and enhanced thrombosis. Histamine in plasma resulted from basophil activation. Intraperitoneal (IP) pretreatment with DEX (5 mg/kg) abolished the DEP-induced histamine increase in BAL and plasma and abrogated airway inflammation and thrombogenicity. The IT pretreatment with DEX (0.5 mg/kg) showed a partial but parallel inhibition of all of these parameters. Pretreatment with SC (40 mg/kg, IP) strongly inhibited airway inflammation, thrombogenicity, and histamine release. CONCLUSIONS: Our results are compatible with the triggering of mast cell degranulation and histamine release by DEP. Histamine plays an initial central role in airway inflammation, further release of histamine by circulating basophils, and peripheral thrombotic events. Antiinflammatory pretreatment can abrogate the peripheral thrombogenicity by preventing histamine release from mast cells.  (+info)

Delivery of therapeutic aerosols to intubated babies. (54/343)

Delivery of drug aerosols to the lungs of ventilated neonates by metered dose inhaler and spacer (Aerochamber) and ultrasonic nebuliser (Pentasonic) was assessed using sodium cromoglycate. The mean proportion of a known intratracheal dose of sodium cromoglycate excreted in the urine of four intubated infants was 37.5%. After assuming that 38% of the sodium cromoglycate aerosol reaching the neonatal lung will be excreted in the urine, three puffs (15 mg) delivered by metered dose inhaler and spacer resulted in a pulmonary dose of 258 micrograms (1.7%, n = 7). A dose of 20 mg (4 ml) sodium cromoglycate ultrasonically nebulised over five minutes into the inspiratory limb of a standard ventilator circuit produced a pulmonary dose of 257 micrograms (1.3%, n = 7). Of two in vitro lung models assessed, a combination of filter and neonatal test lung was superior to a multistage impactor in estimating the in vivo pulmonary sodium cromoglycate dose delivered by metered dose inhaler and spacer (243 micrograms v 1740 micrograms).  (+info)

Sodium cromoglycate and ipratropium bromide in exercise-induced asthma. (55/343)

In thirteen patients with extrinsic asthma the effects of placebo, sodium cromoglycate, ipratropium bromide, and ipratropium bromide plus sodium cromoglycate were studied in a random double-blind fashion to assess their inhibitory action in exercise-induced asthma (EIA). Exercise testing consisted of steady state running on an inclined treadmill for up to eight minutes. In eight of the 13 patients studied the baseline ratio of expiratory flow at 50% vital capacity (VC) breathing helium-oxygen (V50He) to V50air was over 1.20 and they were called responders; the remaining five patients were called non-responders. There was a significantly lower baseline maximum mid-expiratory flow rate (MMEF) in non-responders (P less than 0.02) as compared to responders but no difference in forced expiratory volume in one second (FEV1) or forced vital capacity (FVC). Sodium cromoglycate (P less than 0.02), ipratropium bromide (P less than 0.01), and ipratropium bromide plus spdium cromoglycate (P less than 0.01) all significantly inhibited the percentage fall in FEV1 after exercise in the responders. Ipratropium bromide had no preventive action on non-responders, unlike sodium cromoglycate (P less than 0.05) and ipratropium bromide plus sodium cromoglycate (P less than 0.02). It is postulated that mediator release is an important factor in development of EIA in most extrinsic asthmatics, whereas cholinergic mechanisms are relevant only in those patients in whom the main site of airflow obstruction is in the large central airways.  (+info)

Predicting the clinical course of suspected acute viral upper respiratory tract infection in children. (56/343)

BACKGROUND: Suspected acute viral upper respiratory tract infection (SAVURTI) is the commonest acute reason why children consult in general practice. The clinical course varies widely and about one in five children re-consult for the same SAVURTI episode. If clinicians had feasible tools for predicting which children are likely to suffer a prolonged course, then additional explanations and possibly treatments could be provided at the initial consultation that might enable carers to manage the condition without re-consulting. OBJECTIVE: To identify features available on the day of consulting that might predict a prolonged clinical course among children with SAVURTI. METHOD: Regression analysis using Canadian Respiratory Illness and Flu Scale (CARIFS) data from a randomized controlled trial cohort of children aged from 6 months to 12 years consulting in general practice with SAVURTI. RESULTS: Two variables from the clinician's records ('age' and 'cough') and two variables from the CARIFS completed by carers on the day of consulting ('fever' and 'low energy, tired') explained approximately 15% of the variation present in CARIFS scores on day seven. CONCLUSION: Children and carers may benefit from a clear account of the evidence that the clinical course of RTIs in children varies widely and may be longer that expected, and that prediction for individuals is difficult.  (+info)