Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. (1/58)

BACKGROUND: Crocus sativus L. (saffron) is used in folk medicine, for example as an antiedematogenic agent. We aimed to evaluate the antinociceptive and anti-inflammatory activity of saffron extracts in mice. RESULTS: We used aqueous and ethanolic maceration extracts of Crocus sativus L. stigma and petals. Antinociceptive activity was examined using the hot plate and writhing tests. The effect of extracts against acute inflammation was studied using xylene induced ear edema in mice. The activity of the extracts against chronic inflammation was assessed by formalin-induced edema in the rat paw. In the hot plate tests, intraperitoneal injection of both extracts showed no significant antinociceptive activity in mice. The extracts exhibited antinociceptive activity against acetic acid induced writhing. Naloxone partially blocked only the antinociceptive activity of the stigma aqueous extract. Only the stigma extracts showed weak to moderate effect against acute inflammation. In chronic inflammation, both aqueous and ethanolic stigma extracts, as well as ethanolic petal extract, exerted anti-inflammatory effects. CONCLUSIONS: We conclude that aqueous and ethanolic extracts of saffron stigma and petal have an antinociceptive effect, as well as acute and/or chronic anti-inflammatory activity.  (+info)

Constituents of the pollen of Crocus sativus L. and their tyrosinase inhibitory activity. (2/58)

Five new naturally occurring monoterpenoids, crocusatins-A (1), -B (2a), -C (3), -D (4a) -E (5), a new lactate, sodium (2S)-(O-hydroxyphenyl)lactate (6), and eighteen known compounds were isolated and characterized from the pollen of Crocus sativus L. The tyrosinase inhibitory activities of these compounds were also discussed.  (+info)

Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. (3/58)

The accumulation of three major carotenoid derivatives-crocetin glycosides, picrocrocin, and safranal-is in large part responsible for the color, bitter taste, and aroma of saffron, which is obtained from the dried styles of Crocus. We have identified and functionally characterized the Crocus zeaxanthin 7,8(7',8')-cleavage dioxygenase gene (CsZCD), which codes for a chromoplast enzyme that initiates the biogenesis of these derivatives. The Crocus carotenoid 9,10(9',10')-cleavage dioxygenase gene (CsCCD) also has been cloned, and the comparison of substrate specificities between these two enzymes has shown that the CsCCD enzyme acts on a broader range of precursors. CsZCD expression is restricted to the style branch tissues and is enhanced under dehydration stress, whereas CsCCD is expressed constitutively in flower and leaf tissues irrespective of dehydration stress. Electron microscopy revealed that the accumulation of saffron metabolites is accompanied by the differentiation of amyloplasts and chromoplasts and by interactions between chromoplasts and the vacuole. Our data suggest that a stepwise sequence exists that involves the oxidative cleavage of zeaxanthin in chromoplasts followed by the sequestration of modified water-soluble derivatives into the central vacuole.  (+info)

Inhibitory effects of aqueous crude extract of Saffron (Crocus sativus L.) on chemical-induced genotoxicity in mice. (4/58)

Saffron (dried stigmas of Crocus sativus L.), was evaluated in the mouse bone marrow micronucleus test for its possible protective effects against chromosomal damage induced by cisplatin (CIS), mitomycin-C (MMC) and urethane (URE). Three doses of saffron (25, 50 and 100 mg/kg body weight) were orally administered to mice for five consecutive days prior to administration of genotoxins under investigation. From the results obtained, it was evident that the administration of 50 and 100 mg saffron/kg body weight could significantly inhibit the in vivo genotoxicity of these genotoxins. However, all the three doses of saffron were effective in exerting a protective effect against urethane.  (+info)

Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. (5/58)

One of the most promising strategies for cancer prevention today is chemoprevention using readily available natural substances from vegetables, fruits, herbs and spices. Among the spices, saffron (Crocus sativus, L) a member of the large family Iridaceae, has drawn attention because apart from its use as a flavouring agent, pharmacological studies have demonstrated many health promoting properties including radical scavenging, anti- mutagenic and immuno-modulating effects. In the present study the effects of an aqueous infusion of saffron on two stage skin papillogenesis / carcinogenesis in mice initiated by 7-12 dimethyl benz[a] anthracin (DMBA) and promoted with croton oil were investigated. Significant reduction in papilloma formation was found with saffron application in the pre-initiation and post-initiation periods, and particular when the agent was given both pre- and post-initiation. The inhibition appeared to be at least partly due on modulatory effects of saffron on some phase II detoxifying enzymes like glutathione-S-transferase (GST) and glutahinoe peroxidase (GPx), as well as catalase (CAT) and superoxide dismutase (SOD).  (+info)

Interactive effects of saffron with garlic and curcumin against cyclophosphamide induced genotoxicity in mice. (6/58)

Saffron is a well-known spice and food colorant commonly consumed in different parts of the world. Recently, much attention has been focused on the biological and medicinal properties of saffron. In the present study the interactive effects of saffron with two commonly consumed dietary agents, garlic and curcumin was evaluated for anti-genotoxic effects against cyclophosphamide (CPH) in the mouse bone marrow micronucleus test. Experimental animals were orally pretreated with saffron (100 mg/kg body weight), garlic (250 mg/kg body weight) and curcumin (10 mg/kg body weight), either alone or in combination for five consecutive days, 2h prior to the administration of CPH. Maximum reduction in the frequencies of micronucleated polychromatic erythrocytes (Mn PCEs) induced by CPH was observed when all the three test compounds were administered together. Furthermore, the protective effects were more pronounced in the garlic-administered groups compared to curcumin and/or saffron administered groups.  (+info)

Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: a pilot double-blind randomized trial [ISRCTN45683816]. (7/58)

BACKGROUND: The morbidity and mortality associated with depression are considerable and continue to increase. Depression currently ranks fourth among the major causes of disability worldwide, after lower respiratory infections, prenatal conditions, and HIV/AIDS. Crocus sativus L. is used to treat depression. Many medicinal plants textbooks refer to this indication whereas there is no evidence-based document. Our objective was to compare the efficacy of stigmas of Crocus sativus (saffron) with imipramine in the treatment of mild to moderate depression in a 6-week pilot double-blind randomized trial. METHODS: Thirty adult outpatients who met the Diagnostic and Statistical Manual of Mental Disorders, 4th edition for major depression based on the structured clinical interview for DSM IV participated in the trial. Patients have a baseline Hamilton Rating Scale for Depression score of at least 18. In this double-blind, single-center trial, patients were randomly assigned to receive capsule of saffron 30 mg/day (TDS) (Group 1) and capsule of imipramine 100 mg/day (TDS) (Group 2) for a 6-week study. RESULTS: Saffron at this dose was found to be effective similar to imipramine in the treatment of mild to moderate depression (F = 2.91, d.f. = 1, P = 0.09). In the imipramine group anticholinergic effects such as dry mouth and also sedation were observed more often that was predictable. CONCLUSION: The main overall finding from this study is that saffron may be of therapeutic benefit in the treatment of mild to moderate depression. To the best of our knowledge this is the first clinical trial that supports this indication for saffron. A large-scale trial with placebo control is warranted.  (+info)

Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. (8/58)

Crocus sativus is a triploid sterile plant characterized by its long red stigmas, which produce and store significant quantities of the apocarotenoids crocetin and crocin, formed from the oxidative cleavage of zeaxanthin. Here, we investigate the accumulation and the molecular mechanisms that regulate the synthesis of these apocarotenoids during stigma development in C. sativus. We cloned the cDNAs for phytoene synthase, lycopene-beta-cyclase, and beta-ring hydroxylase from C. sativus. With the transition of yellow undeveloped to red fully developed stigmas, an accumulation of zeaxanthin was observed, accompanying the expression of CsPSY, phytoene desaturase, and CsLYCb, and the massive accumulation of CsBCH and CsZCD transcripts. We analyzed the expression of these two transcripts in relation to zeaxanthin and apocarotenoid accumulation in other Crocus species. We observed that only the relative levels of zeaxanthin in the stigma of each cultivar were correlated with the level of CsBCH transcripts. By contrast, the expression levels of CsZCD were not mirrored by changes in the apocarotenoid content, suggesting that the reaction catalyzed by the CsBCH enzyme could be the limiting step in the formation of saffron apocarotenoids in the stigma tissue. Phylogenetic analysis of the CsBCH intron sequences allowed us to determine the relationships among 19 Crocus species and to identify the closely related diploids of C. sativus. In addition, we examined the levels of the carotenoid and apocarotenoid biosynthetic genes in the triploid C. sativus and its closer relatives to determine whether the quantities of these specific mRNAs were additive or not in C. sativus. Transcript levels in saffron were clearly higher and nonadditive, suggesting that, in the triploid gene, regulatory interactions that produce novel effects on carotenoid biosynthesis genes are involved.  (+info)