Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. (9/120)

Interleukin-18 (IL-18) is a proinflammatory cytokine that plays a key role in the activation of natural killer and T helper 1 cell responses principally by inducing interferon-gamma (IFN-gamma). Human and mouse secreted IL-18-binding proteins (IL-18BPs) have recently been described which block IL-18 activity but have no sequence similarity to membrane IL-18 receptors. Several poxvirus genes encode proteins with sequence similarity to IL-18BPs. Here we show that vaccinia, ectromelia and cowpox viruses secrete from infected cells a soluble IL-18BP (vIL-18BP) that may modulate the host antiviral response. The ectromelia virus protein was found to block NF-kappaB activation and induction of IFN-gamma in response to IL-18. The highly attenuated vaccinia virus modified virus Ankara encodes IL-18-binding activity, and thus deletion of the vIL-18BP may improve further the safety and immunogenicity of this promising human vaccine candidate. We confirm that molluscum contagiosum virus, a molluscipoxvirus that produces small skin tumours in immunocompetent individuals and opportunistic infections in immunodeficient AIDS patients, also encodes a related, larger vIL-18BP (gene MC54L). This protein may contribute to the lack of inflammatory response characteristic of molluscum contagiosum virus lesions. The expression of vIL-18BPs by distinct poxvirus genera that cause local or general viral dissemination, or persistent or acute infections in the host, emphasizes the importance of IL-18 in response to viral infections.  (+info)

The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasminogen activators and plasmin. (10/120)

The orthopoxvirus serpin SPI-3 is N-glycosylated and suppresses fusion between infected cells. Although SPI-3 contains motifs conserved in inhibitory serpins, no proteinase inhibition by SPI-3 has been demonstrated, and mutations within the serpin reactive center loop (RCL) do not affect the ability to regulate cell fusion. We demonstrate here that SPI-3 protein expressed by transcription/translation in vitro is able to form SDS-stable complexes with the serine proteinases plasmin, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), consistent with inhibitory activity of the serpin. Weaker complexes were noted with factor Xa and thrombin. Mutation of Arg-340/Ser-341 at the predicted P1/P1' sites within the RCL prevented the formation of complexes between SPI-3 and plasmin, uPA, or tPA, suggesting that the arginine at the P1 position was required for complex formation. SPI-3 protein lacking the N-terminal signal peptide was purified by means of an N-terminal His(10)-tag and gave complete inhibition in vitro of plasmin, uPA, and tPA and partial inhibition of factor Xa. SPI-3 is therefore a bifunctional protein that acts as a proteinase inhibitor and suppresses infected cell-cell fusion. As a proteinase inhibitor, SPI-3 has similar specificity to the leporipoxvirus SERP1 protein of myxoma virus, although the two serpins are less than 30% identical overall. The inhibition constants of SPI-3 for plasmin, uPA, and tPA were determined to be 0.64, 0.51, and 1.9 nM, respectively, very similar to the corresponding K(i) values of SERP1.  (+info)

The cowpox virus SPI-3 and myxoma virus SERP1 serpins are not functionally interchangeable despite their similar proteinase inhibition profiles in vitro. (11/120)

The myxoma virus (MYX) serpin SERP1 is a secreted glycoprotein with anti-inflammatory activity that is required for full MYX virulence in vivo. The cowpox virus (CPV) serpin SPI-3 (vaccinia virus ORF K2L) is a nonsecreted glycoprotein that blocks cell-cell fusion, independent of serpin activity, and is not required for virulence of vaccinia virus or CPV in mice. Although SPI-3 has only 29% overall identity to SERP1, both serpins have arginine at the P1 position in the reactive center loop, and SPI-3 has a proteinase inhibitory profile strikingly similar to that of SERP1 [Turner, P. C., Baquero, M. T., Yuan, S., Thoennes, S. R., and Moyer, R. W. (2000) Virology 272, 267-280]. To determine whether SPI-3 and SERP1 were functionally equivalent, a CPV variant was constructed where the SPI-3 gene was deleted and replaced with the SERP1 gene regulated by the SPI-3 promoter. Cells infected with CPVDeltaSPI-3::SERP1 secrete SERP1 and show extensive fusion, suggesting that SERP1 is unable to functionally substitute for SPI-3 in fusion inhibition. In the reciprocal experiment, both copies of SERP1 were deleted from MYX and replaced with SPI-3 under the control of the SERP1 promoter. Cells infected with the MYXDeltaSERP1::SPI-3 recombinant unexpectedly secreted SPI-3, suggesting either that the cellular secretory pathway is enhanced by MYX or that CPV encodes a protein that prevents SPI-3 secretion. MYXDeltaSERP1::SPI-3 was as attenuated in rabbits as MYXDeltaSERP1::lacZ, indicating that SPI-3 cannot substitute for SERP1 in MYX pathogenesis.  (+info)

Crystal structure of the apoptotic suppressor CrmA in its cleaved form. (12/120)

BACKGROUND: Cowpox virus expresses the serpin CrmA (cytokine response modifier A) in order to avoid inflammatory and apoptotic responses of infected host cells. The targets of CrmA are members of the caspase family of proteases that either initiate the extrinsic pathway of apoptosis (caspases 8 and 10) or trigger activation of the pro-inflammatory cytokines interleukin-1beta and interleukin-18 (caspase 1). RESULTS: We have determined the structure of a cleaved form of CrmA to 2.26 A resolution. CrmA has the typical fold of a cleaved serpin, even though it lacks the N-terminal half of the A helix, the entire D helix, and a portion of the E helix that are present in all other known serpins. The reactive-site loop of CrmA was mutated to contain the optimal substrate recognition sequence for caspase 3; however, the mutation only marginally increased the ability of CrmA to inhibit caspase 3. Superposition of the reactive-site loop of alpha1-proteinase inhibitor on the cleaved CrmA structure provides a model for virgin CrmA that can be docked to caspase 1, but not to caspase 3. CONCLUSIONS: CrmA exemplifies viral economy, selective pressure having resulted in a 'minimal' serpin that lacks the regions not needed for structural integrity or inhibitory activity. The docking model provides an explanation for the selectivity of CrmA. Our demonstration that engineering optimal substrate recognition sequences into the CrmA reactive-site loop fails to generate a good caspase 3 inhibitor is consistent with the docking model.  (+info)

Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. (13/120)

Allergen-induced asthma is characterized by chronic pulmonary inflammation, reversible bronchoconstriction, and airway hyperreactivity to provocative stimuli. Multiple CC-chemokines, which are produced by pulmonary tissue in response to local allergen challenge of asthmatic patients or experimentally sensitized rodents, chemoattract leukocytes from the circulation into the lung parenchyma and airway, and may also modify nonchemotactic function. To determine the therapeutic potential of local intrapulmonary CC-chemokine blockade to modify asthma, a recombinant poxvirus-derived viral CC-chemokine inhibitor protein (vCCI), which binds with high affinity to rodent and human CC-chemokines in vitro and neutralizes their biological activity, was administered by the intranasal route. Administration of vCCI to the respiratory tract resulted in dramatically improved pulmonary physiological function and decreased inflammation of the airway and the lung parenchyma. In contrast, vCCI had no significant effect on the circulating levels of total or allergen-specific IgE, allergen-specific cytokine production by peripheral lymph node T cells, or peritoneal inflammation after local allergen challenge, indicating that vCCI did not alter systemic Ag-specific immunity or chemoattraction at extrapulmonary sites. Together, these findings emphasize the importance of intrapulmonary CC-chemokines in the pathogenesis of asthma, and the therapeutic potential of generic and local CC-chemokine blockade for this and other chronic diseases in which CC-chemokines are locally produced.  (+info)

Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities. (14/120)

The affinities of purified recombinant human IL-18 binding protein (BP) and ectromelia and cowpox virus homologs for human and murine IL-18 were compared by plasmon resonance. The dissociation constants of human IL-18BP were similar for murine and human IL-18. By contrast, the dissociation constants of the viral proteins for murine IL-18 were 12- to 50-fold lower than that for human IL-18. The ectromelia and cowpox virus proteins were biologically active, as judged by their ability to inhibit induction of interferon-gamma by murine and human IL-18. The relative affinities of the orthopoxvirus IL-18BPs are consistent with the rodent host range of the viruses.  (+info)

Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-kappaB activation. (15/120)

NF-kappaB comprises a family of transcription factors that regulate key immune processes. In this study, the effects of orthopoxvirus infection upon the activation of NF-kappaB were examined. During the early phase of infection, cowpox virus can inhibit the induction of NF-kappaB-regulated gene expression by interfering with the process of IkappaBalpha degradation. Although either okadaic acid or tumor necrosis factor (TNF) treatment of infected cells can induce IkappaBalpha phosphorylation, further processing of IkappaBalpha is inhibited. These results suggest that cowpox virus is capable of inhibiting the activation of NF-kappaB at a point where multiple signal transduction pathways converge. Other orthopoxviruses affect NF-kappaB activity, but in a type-specific manner. Raccoonpox virus and vaccinia virus (Copenhagen strain) negatively affect NF-kappaB induction by TNF. In contrast, the modified vaccinia virus Ankara strain induces NF-kappaB activation, even in the absence of other stimuli. These findings suggest that orthopoxviruses may affect a broad range of virus-host interactions through their effects upon NF-kappaB activation. Moreover, because of the central role for NF-kappaB in immune processes and disease, these type-specific effects may contribute significantly to the immunogenic and pathogenic properties of poxviruses.  (+info)

The vaccinia virus soluble interferon-gamma receptor is a homodimer. (16/120)

The vaccinia virus (VV) interferon (IFN)-gamma receptor (IFN-gammaR) is a 43 kDa soluble glycoprotein that is secreted from infected cells early during infection. Here we demonstrate that the IFN-gammaR from VV, cowpox virus and camelpox virus exists naturally as a homodimer, whereas the cellular IFN-gammaR dimerizes only upon binding the homodimeric IFN-gamma. The existence of the virus protein as a dimer in the absence of ligand may provide an advantage to the virus in efficient binding and inhibition of IFN-gamma in solution.  (+info)