Retinoic acid prevents experimental Cushing syndrome. (25/143)

Cushing syndrome is caused by an excess of adrenocorticotropic hormone (ACTH) production by neuroendocrine tumors, which subsequently results in chronic glucocorticoid excess. We found that retinoic acid inhibits the transcriptional activity of AP-1 and the orphan receptors Nur77 and Nurr1 in ACTH-secreting tumor cells. Retinoic acid treatment resulted in reduced pro-opiomelanocortin transcription and ACTH production. ACTH inhibition was also observed in human pituitary ACTH-secreting tumor cells and a small-cell lung cancer cell line, but not in normal cells. This correlated with the expression of the orphan receptor COUP-TFI, which was found in normal corticotrophs but not in pituitary Cushing tumors. COUP-TFI expression in ACTH-secreting tumor cells blocked retinoic acid action. Retinoic acid also inhibited cell proliferation and, after prolonged treatment, increased caspase-3 activity and induced cell death in ACTH-secreting cells. In adrenal cortex cells, retinoic acid inhibited corticosterone production and cell proliferation. The antiproliferative action and the inhibition of ACTH and corticosterone produced by retinoic acid were confirmed in vivo in experimental ACTH-secreting tumors in nude mice. Thus, we conclude that the effects of retinoic acid combine in vivo to reverse the endocrine alterations and symptoms observed in experimental Cushing syndrome.  (+info)

Induction of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI ) gene expression is mediated by ETS factor binding sites. (26/143)

Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI, or NR2F1) is an orphan nuclear receptor that plays a major role in the development of the nervous system. We show here that three ETS response elements in the COUP-TFI promoter mediate its transcription. A reporter gene containing these ETS binding sites is activated by Ets-1, while the same reporter with point mutations on all three ETS response elements is not. We also show that Ets-1 binds to these response elements and that other ETS factors also transactivate the COUP-TFI promoter. In addition, COUP-TFI is coexpressed with some ETS factors in the mouse embryo. These results indicate that members of the ETS family can activate COUP-TFI gene expression.  (+info)

Regulation of aromatase promoter activity in human breast tissue by nuclear receptors. (27/143)

Using the yeast one-hybrid approach to screen a human breast tissue hybrid cDNA expression library, we have found that four orphan/nuclear receptors, ERRalpha-1, EAR-2, COUP-TFI (EAR-3), and RARgamma, bind to the silencer (S1) region of the human aromatase gene. S1 down regulates promoters I.3 and II of the human aromatase gene. In this study, the interaction of EAR-2, COUP-TFI, and RARgamma with S1 was confirmed by DNA mobility shift analysis. In contrast to the findings that ERRalpha-1 behaves as a positive regulatory factor, these three nuclear receptors were found, by mammalian cell transfection experiments, to act as negative regulatory factors by binding to S1. Furthermore, the negative action of these three nuclear receptors could override the positive effect of ERRalpha-1. RT-PCR analysis of 11 cell lines and 55 human breast tumor specimens has shown that these nuclear receptors are expressed in human breast tissue. Since EAR-2, COUP-TFI, and RARgamma are expressed at high levels, it is likely that S1 is a negative regulatory element that suppresses aromatase promoters I.3 and II in normal breast tissue. In cancer tissue, S1 may function as a positive element since ERRalpha-1 is expressed, but EAR-2 and RARgamma are only present in a small number of tumor specimens. This hypothesis is sustained by the finding that there is a weak inverse correlation between the expression of COUP-TFI and that of aromatase in breast tumor tissue. Our studies have revealed that estrogen receptor alpha (ERalpha) can also bind to S1, in a ligand-dependent manner. By binding to S1, ERalpha down-regulates the aromatase promoter activity. These results demonstrate that nuclear receptors play important roles in modulating aromatase expression in human breast tissue.  (+info)

Orphan receptor chicken ovalbumin upstream promoter transcription factors inhibit steroid factor-1, upstream stimulatory factor, and activator protein-1 activation of ovine follicle-stimulating hormone receptor expression via composite cis-elements. (28/143)

The FSH receptor (FSHR) is selectively expressed in the granulosa and Sertoli cells in a development-dependent manner. Little is known regarding how the regulatory factors balance expression of this gene in ovarian cycles or spermatogenic stages. We have used the ovine FSHR promoter as a model system and identified a third regulatory element (RE-3) located at -197 to -171 of the strongest promoter. Gel mobility shift and antibody supershift assays demonstrated that nuclear factors c-Fos/c-Jun, steroidogenic factor-1 (SF-1), upstream stimulatory factor-1/2 (USF-1/2), and chicken ovalbumin upstream promoter transcription factor-1/2 (COUP-TFI/II) potentially bound to RE-3. We have also extended our previous observations by showing that a sequence containing an E-box was not only bound by USF proteins but also recognized by COUP-TF orphan receptors. Functional studies demonstrated that USF-1/2, c-Fos/c-Jun, and SF-1 were activators, whereas COUP-TFs were repressors. Our studies indicated that RE-3 mediated SF-1 activation as well as phorbol 12-myristate 13-acetate stimulation, whereas COUP-TFs inhibited AP-1, USFs, and SF-1 activation. We also demonstrated that both COUP-TF-binding sites in the core promoter were required for the bipartite elements to oppose their competitor binding. These data suggest a mechanism by which positive and negative regulators compete for the common regulatory elements, providing antagonistic pathways that might govern the expression of FSHR in gonadal cells.  (+info)

Formation of an hER alpha-COUP-TFI complex enhances hER alpha AF-1 through Ser118 phosphorylation by MAPK. (29/143)

The enhancement of the human estrogen receptor alpha (hER alpha, NR3A1) activity by the orphan nuclear receptor COUP-TFI is found to depend on the establishment of a tight hER alpha-COUP-TFI complex. Formation of this complex seems to involve dynamic mechanisms different from those allowing hER alpha homodimerization. Although the hER alpha-COUP-TFI complex is present in all cells tested, the transcriptional cooperation between the two nuclear receptors is restricted to cell lines permissive to hER alpha activation function 1 (AF-1). In these cells, the physical interaction between COUP-TFI and hER alpha increases the affinity of hER alpha for ERK2/p42(MAPK), resulting in an enhanced phosphorylation state of the hER alpha Ser118. hER alpha thus acquires a strengthened AF-1 activity due to its hyperphosphorylation. These data indicate an alternative interaction process between nuclear receptors and demonstrate a novel protein intercommunication pathway that modulates hER alpha AF-1.  (+info)

A COUP-TF/Svp homolog is highly expressed during vitellogenesis in the mosquito Aedes aegypti. (30/143)

In the mosquito Aedes aegypti, vitellogenesis is activated via an ecdysteroid hormonal cascade initiated by a blood meal. The functional ecdysone receptor is a heterodimer composed of the ecdysone receptor (EcR) and ultraspiracle, the homolog of the retinoid X receptor. The precise tuning of this hormonal response requires participation of both positive and negative transcriptional regulators. In Drosophila, Svp, a homolog of chicken ovalbumin upstream promoter transcription factor (COUP-TF), inhibits ecdysone receptor complex-mediated transactivation in vitro and in vivo. Here we report the cloning and characterization of the Svp homolog in mosquito Aedes aegypti, AaSvp. It possesses a high degree of amino acid sequence similarity to the members of the COUP-TF/Svp subfamily. AaSvp transcripts and protein are present in the fat body at high levels from the state of arrest to about 60 h post blood meal. AaSvp binds strongly to a variety of direct repeats of the sequence AGGTCA, but weakly to inverted repeats such as hsp27 EcRE. Transient transfection assays in Drosophila S2 cells showed that AaSvp was able to repress 20-hydroxyecdysone (20E)-dependent transactivation mediated by the mosquito ecdysteroid receptor complex. These data suggest that AaSvp negatively regulates the 20E signaling in the fat body during mosquito vitellogenesis.  (+info)

Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element. (31/143)

The expression of several genes involved in fatty acid metabolism is regulated by peroxisome proliferator-activated receptors (PPARs). To gain more insight into the control of carnitine palmitoyltransferase (CPT) gene expression, we examined the transcriptional regulation of the human CPT II gene. We show that the 5'-flanking region of this gene is transcriptionally active and binds PPARalpha in vivo in a chromatin immunoprecipitation assay. In addition, we characterized the peroxisome proliferator-responsive element (PPRE) in the proximal promoter of the CPT II gene, which appears to be a novel PPRE. The sequence of this PPRE contains one half-site which is a perfect consensus sequence (TGACCT) but no clearly recognizable second half-site (CAGCAC); this part of the sequence contains only one match to the consensus, which seems to be irrelevant for the binding of PPARalpha. As expected, other members of the nuclear receptor superfamily also bind to this element and repress the activation mediated by PPARalpha, thus showing that the interplay between several nuclear receptors may regulate the entry of fatty acids into the mitochondria, a crucial step in their metabolism.  (+info)

Activation of the MAP kinase pathway induces chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) expression in human breast cancer cell lines. (32/143)

Growth factors are essential for cellular growth and differentiation in both normal and malignant human breast epithelial cells. In the present study we investigated the effect of epidermal growth factor (EGF), transforming growth factor alpha (TGFalpha) and phorbol myristate acetate (PMA) on chicken ovalbumin upstream promoter-transcription factor (COUP-TF) expression in human breast cancer cells. The orphan receptors COUP-TFI and COUP-TFII are members of the nuclear receptor superfamily. The high degree of evolutionary conservation of these proteins strongly argues for an important biological function. COUP-TF expression was highest in SK-BR3 cells (approximately 130 amol/ micro g total RNA), while the lowest COUP-TF expression was observed in MCF-7 cells (3.5 amol/ micro g total RNA). While treatment of EGF, TGFalpha and PMA induced expression of COUP-TFII, COUP-TFI did not respond to these agents. Oncostatin M (OSM) is known to exert an antiproliferative effect in breast cancer cells. Treatment of MCF-7 cells with OSM resulted in an approximately 90% reduction of COUP-TFII mRNA expression. In SK-BR3 cells, treatment with the MEK inhibitor UO126 resulted in a profound suppression of endogenous COUP-TFII expression. Furthermore, cotreatment with UO126 prevented induction of COUP-TFII expression by EGF in MCF-7 cells. In conclusion, our data provide evidence, for the first time, that mitogenic substances which activate the MAP kinase pathway, can induce COUP-TFII expression. Our results strongly suggest that an active MAP kinase pathway is essential for COUP-TFII expression in human breast cancer cells.  (+info)