Identification of novel loci involved in entry by Legionella pneumophila. (57/1067)

Legionella pneumophila is primarily an intracellular pathogen during infection; thus, the mechanisms of entry into host cells are likely to be important for pathogenesis. Several L. pneumophila mutants that display an enhanced-entry (Enh) phenotype were isolated by selecting for bacteria that enter host cells at a higher frequency than wild-type. In the course of characterizing the genetic basis of one of these mutants, C3, a strategy was developed for the isolation of laboratory-media-repressed virulence determinants from L. pneumophila. Screens for dominant mutations using a genomic DNA library from C3 resulted in the isolation of three cosmids that confer an Enh phenotype to wild-type L. pneumophila. Transposon mutagenesis of these cosmids allowed identification of three loci that affect entry. Analysis of the putative proteins encoded by these loci, designated rtxA and enhC, demonstrated similarity to repeats in the structural toxin protein and the secreted Sel-1 protein from Caenorhabditis elegans, respectively. L. pneumophila rtxA and enhC mutants display significantly reduced entry into host cells, compared to wild-type bacteria. The phenotype that the cosmids containing these loci confer is most likely due to elevated expression resulting from their presence on multicopy vectors. The use of increased gene copy number to overexpress genes that are normally repressed under laboratory growth conditions is generally applicable to the isolation of virulence determinants from L. pneumophila and other bacterial pathogens.  (+info)

daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. (58/1067)

The daf-12 gene acts at the convergence of pathways regulating larval diapause, developmental age, and adult longevity in Caenorhabditis elegans. It encodes a nuclear receptor most closely related to two C. elegans receptors, NHR-8 and NHR-48, Drosophila DHR96, and vertebrate vitamin D and pregnane-X receptors. daf-12 has three predicted protein isoforms, two of which contain DNA- and ligand-binding domains, and one of which contains the ligand-binding domain only. Mutations cluster in DNA- and ligand-binding domains, but correspond to distinct phenotypic classes. DAF-12 is expressed widely in target tissues from embryo to adult, but is upregulated during midlarval stages. In the adult, expression persists in nervous system and somatic gonad, two tissues that regulate adult longevity. We propose that DAF-12 integrates hormonal signals in cellular targets to coordinate major life history traits.  (+info)

A simple and rapid extraction of high molecular weight chromosomal DNA from Bacillus subtilis protoplasts for cosmid cloning and interspecific transformation. (59/1067)

After conversion of Bacillus subtilis vegetative cells to protoplasts, a simple and rapid method for extracting high-molecular-weight chromosomal DNA was devised with the inclusion of bovine serum albumin and phenol-chloroform treatments. The DNA sample thus prepared was the size of 100-450 kb and could be used for cosmid cloning and interspecific transformation.  (+info)

Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. (60/1067)

Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.  (+info)

A physical map of the polytenized region (101EF-102F) of chromosome 4 in Drosophila melanogaster. (61/1067)

Chromosome 4, the smallest autosome ( approximately 5 Mb in length) in Drosophila melanogaster contains two major regions. The centromeric domain ( approximately 4 Mb) is heterochromatic and consists primarily of short, satellite repeats. The remaining approximately 1.2 Mb, which constitutes the banded region (101E-102F) on salivary gland polytene chromosomes and contains the identified genes, is the region mapped in this study. Chromosome walking was hindered by the abundance of moderately repeated sequences dispersed along the chromosome, so we used many entry points to recover overlapping cosmid and BAC clones. In situ hybridization of probes from the two ends of the map to polytene chromosomes confirmed that the cloned region had spanned the 101E-102F interval. Our BAC clones comprised three contigs; one gap was positioned distally in 102EF and the other was located proximally at 102B. Twenty-three genes, representing about half of our revised estimate of the total number of genes on chromosome 4, were positioned on the BAC contigs. A minimal tiling set of the clones we have mapped will facilitate both the assembly of the DNA sequence of the chromosome and a functional analysis of its genes.  (+info)

Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. (62/1067)

A polarized chromosomal arrangement with clustered telomeres in a meiotic prophase nucleus is often called bouquet and is thought to be important for the pairing of homologous chromosomes. Fluorescence in situ hybridization in fission yeast indicated that chromosomal loci are positioned in an ordered manner as anticipated from the bouquet arrangement. Blocking the formation of the telomere cluster with the kms1 mutation created a disorganized chromosomal arrangement, not only for the regions proximal to the telomere but also for interstitial regions. The kms1 mutation also affected the positioning of a linear minichromosome. Consistent with this cytological observation, the frequency of ectopic homologous recombination between a linear minichromosome and a normal chromosome increased in the kms1 background. Intragenic recombination between allelic loci is reduced in the kms1 mutant, but those between non-allelic loci are unaffected or slightly increased. Thus, telomere-led chromosome organization facilitates homologous pairing and also restricts irregular chromosome pairing during meiosis.  (+info)

Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of A N, N'-diacetylchitobiose phosphorylase. (63/1067)

The major product of bacterial chitinases is N,N'-diacetylchitobiose or (GlcNAc)(2). We have previously demonstrated that (GlcNAc)(2) is taken up unchanged by a specific permease in Vibrio furnissii (unlike Escherichia coli). It is generally held that marine Vibrios further metabolize cytoplasmic (GlcNAc)(2) by hydrolyzing it to two GlcNAcs (i.e. a "chitobiase "). Here we report instead that V. furnissii expresses a novel phosphorylase. The gene, chbP, was cloned into E. coli; the enzyme, ChbP, was purified to apparent homogeneity, and characterized kinetically. The DNA sequence indicates that chbP encodes an 89-kDa protein. The enzymatic reaction was characterized as follows. (GlcNAc)(2)+P(i) GlcNAc-alpha-1-P+GlcNAc K'(cq)=1.0+/-0.2 Reaction 1 The K(m) values for the four substrates were in the range 0.3-1 mm. p-Nitrophenyl-(GlcNAc)(2) was cleaved at 8.5% the rate of (GlcNAc)(2), and p-nitrophenyl (PNP)-GlcNAc was 36% as active as GlcNAc in the reverse direction. All other compounds tested displayed +info)

Mapping analysis of the Xylella fastidiosa genome. (64/1067)

A cosmid library was made of the 2.7 Mb genome of the Gram-negative plant pathogenic bacterium Xylella fastidiosa and analysed by hybridisation mapping. Clones taken from the library as well as genomic restriction fragments of rarely cutting enzymes were used as probes. The latter served as a backbone for ordering the initial map contigs and thus facilitated gap closure. Also, the co-linearity of the cosmid map, and thus the eventual sequence, could be confirmed by this process. A subset of the eventual clone coverage was distributed to the Brazilian X.FASTIDIOSA: sequencing network. Data from this effort confirmed more quantitatively initial results from the hybridisation mapping that the redundancy of clone coverage ranged between 0 and 45-fold across the genome, while the average was 15-fold by experimental design. Reasons for this not unexpected fluctuation and the actual gaps are being discussed, as is the use of this effect for functional studies.  (+info)