The distribution of a CRF-like diuretic peptide in the blood-feeding bug Rhodnius prolixus. (25/1772)

The blood-feeding bug Rhodnius prolixus ingests a large blood meal, and this is followed by a rapid diuresis to eliminate excess water and salt. Previous studies have demonstrated that serotonin and an unidentified peptide act as diuretic factors. In other insects, members of the corticotropin-releasing factor (CRF)-related peptide family have been shown to play a role in post-feeding diuresis. Using fluorescence immunohistochemistry and immunogold labelling with antibodies to the Locusta CRF-like diuretic hormone (Locusta-DH) and serotonin, we have mapped the distribution of neurones displaying these phenotypes in R. prolixus. Strong Locusta-DH-like immunoreactivity was found in numerous neurones of the central nervous system (CNS) and, in particular, in medial neurosecretory cells of the brain and in posterior lateral neurosecretory cells of the mesothoracic ganglionic mass (MTGM). Positively stained neurohaemal areas were found associated with the corpus cardiacum (CC) and on abdominal nerves 1 and 2. In addition, Locusta-DH-like immunoreactive nerve processes were found over the posterior midgut and hindgut. Double-labelling studies for Locusta-DH-like and serotonin-like immunoreactivity demonstrated some co-localisation in the CNS; however, no co-localisation was found in the medial neurosecretory cells of the brain, the posterior lateral neurosecretory cells of the MTGM or neurohaemal areas. To confirm the presence of a diuretic factor in the CC and abdominal nerves, extracts were tested in Malpighian tubule secretion assays and cyclic AMP assays. Extracts of the CC and abdominal nerves caused an increase in the rate of secretion and an increase in the level of cyclic AMP in the Malpighian tubules of fifth-instar R. prolixus. The presence of the peptide in neurohaemal terminals of the CC and abdominal nerves that are distinct from serotonin-containing terminals indicates that the peptide is capable of being released into the haemolymph and that this release can be independent of the release of serotonin.  (+info)

Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. (26/1772)

Corticotropin-releasing hormone (CRH) is a central regulator of the hormonal stress response, causing stimulation of corticotropin and glucocorticoid secretion. CRH is also widely believed to mediate stress-induced behaviors, implying a broader, integrative role for the hormone in the psychological stress response. Mice lacking the CRH gene exhibit normal stress-induced behavior that is specifically blocked by a CRH type 1 receptor antagonist. The other known mammalian ligand for CRH receptors is urocortin. Normal and CRH-deficient mice have an identical distribution of urocortin mRNA, which is confined to the region of the Edinger-Westphal nucleus, and is absent from regions known to mediate stress-related behaviors. Since the Edinger-Westphal nucleus is not known to project to any brain regions believed to play a role in anxiety-like behavior, an entirely different pathway must be postulated for urocortin in the Edinger-Westphal nucleus to mediate these behaviors in CRH-deficient mice. Alternatively, an unidentified CRH-like molecule other than CRH or urocortin, acting through the CRH receptors in brain regions believed to mediate stress-induced behaviors, may mediate the behavioral response to stress, either alone or in concert with CRH.  (+info)

Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia. (27/1772)

We have investigated the hormonal and hypothalamic neuropeptidergic substrates of dehydration-associated anorexia. In situ hybridization and hormone analyses of anorexic and paired food-restricted rats revealed two distinct profiles. First, both groups had the characteristic gene expression and endocrine signatures usually associated with starvation: increased neuropeptide Y and decreased proopiomelanocortin and neurotensin mRNAs in the arcuate nucleus (ARH); increased circulating glucocorticoid but reduced leptin and insulin. Dehydrated animals are strongly anorexic despite these attributes, showing that the output of leptin- and insulin-sensitive ARH neurons that ordinarily stimulate eating must be inhibited. The second pattern occurred only in anorexic animals and had two components: (1) reduced corticotropin-releasing hormone (CRH) mRNA in the neuroendocrine paraventricular nucleus (PVH) and (2) increased CRH and neurotensin mRNAs in the lateral hypothalamic (LHA) and retrochiasmatic areas. However, neither corticosterone nor suppressed PVH CRH gene expression is required for anorexia after dehydration because PVH CRH mRNA in dehydrated adrenalectomized animals is unchanged from euhydrated adrenalectomized controls. We also showed that LHA CRH mRNA was strongly correlated with the intensity of anorexia, increased LHA CRH gene expression preceded the onset of anorexia, and dehydrated adrenalectomized animals (which also develop anorexia) had elevated LHA CRH gene expression with a distribution pattern similar to intact animals. Finally, we identified specific efferents from the CRH-containing region of the LHA to the PVH, thereby providing a neuroanatomical framework for the integration by the PVH of neuropeptidergic signals from the ARH and the LHA. Together, these observations suggest that CRH and neurotensin neurons in the LHA constitute a novel anatomical substrate for their well known anorexic effects.  (+info)

Peripheral injection of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks peripheral CRF- and abdominal surgery-induced delayed gastric emptying in rats. (28/1772)

The effect of the corticotropin-releasing factor (CRF) receptor antagonists astressin and D-Phe CRF(12-41) injected i.v. on CRF-induced delayed gastric emptying (GE) was investigated in conscious rats. Gastric transit was assessed by the recovery of methyl cellulose/phenol red solution 20 min after its intragastric administration. The 55% inhibition of GE induced by CRF (0.6 microgram i.v.) was antagonized by 87 and 100% by i.v. astressin at 3 and 10 microgram, respectively, and by 68 and 64% by i.v. D-Phe CRF(12-41) at 10 and 20 microgram, respectively. CRF (0.6 microgram)-injected intracisternally (i.c.) induced 68% reduction of GE was not modified by i.v. astressin (10 microgram) whereas i.c. astressin (3 or 10 microgram) blocked by 58 and 100%, respectively, i.v. CRF inhibitory action. Abdominal surgery with cecal manipulation reduced GE to 7.1 +/- 3.1 and 27.5 +/- 3.3% at 30 and 180 min postsurgery, respectively, compared with 40.3 +/- 4.3 and 59.5 +/- 2.9% at similar times after anesthesia alone. Astressin (3 microgram i.v.) completely and D-Phe CRF(12-41) (20 microgram i.v.) partially (60%) blocked surgery-induced gastric stasis observed at 30 or 180 min. The CRF antagonists alone (i.v. or i.c.) had no effect on basal GE. These data indicate that CRF acts in the brain and periphery to inhibit GE through receptor-mediated interaction and that peripheral CRF is involved in acute postoperative gastric ileus; astressin is a potent peripheral antagonist of CRF when injected i.v. whereas i.c. doses >/=3 microgram exert dual central and peripheral blockade of CRF action on gastric transit.  (+info)

Effects of chronic ethanol exposure on neurophysiological responses to corticotropin-releasing factor and neuropeptide Y. (29/1772)

Stress has been reported to influence ethanol consumption and relapse in abstinent alcoholics. The present study examined if prolonged alterations in neurophysiological responses to corticotropin-releasing factor (CRF) and neuropeptide Y (NPY), peptides known to influence stress responses, would persist during protracted ethanol abstinence. Male Wistar rats were chronically exposed to ethanol vapour (EtOH group) or air (control group) for 6 weeks. Upon removal from the vapour chambers, recording electrodes were implanted in the cortex and amygdala. The effects of intracerebroventricular infusions of CRF and NPY on electroencephalogram (EEG) and event-related potentials (ERPs) were then assessed 10-15 weeks after withdrawal from ethanol. Following abstinence from ethanol, the EtOH group displayed increased power in the 6-8 Hz frequency range and increased stability in the cortical EEG. In addition, in the EtOH group the amplitude of the P2 ERP component in the frontal cortex was decreased and the latency of the P3 ERP component in the parietal cortex was delayed, compared to the control group during baseline recording conditions. The EtOH group was also more responsive to CRF and NPY. CRF significantly increased cortical power (6-8 Hz) and increased cortical EEG stability in the EtOH group, compared to controls. Additionally, NPY significantly decreased the amplitude of the N1 ERP component in the amygdala of the EtOH group, but not in the control group. This enhanced sensitivity to CRF and NPY following chronic ethanol exposure and abstinence suggests that these peptidergic systems may play a role in the symptomatology of the prolonged abstinence syndrome.  (+info)

Independent and overlapping effects of corticosterone and testosterone on corticotropin-releasing hormone and arginine vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus and stress-induced adrenocorticotropic hormone release. (30/1772)

Adrenocorticotropin (ACTH) release is regulated by both glucocorticoids and androgens; however, the precise interactions are unclear. We have controlled circulating corticosterone (B) and testosterone (T) by adrenalectomy (ADX) +/- B replacement and gonadectomy (GDX) +/- T replacement, comparing these to sham-operated groups. We hoped to reveal how and where these neuroendocrine systems interact to affect resting and stress-induced ACTH secretion. ADX responses. In gonadal-intact rats, ADX increased corticotropin-releasing factor (CRH) and vasopressin (AVP) mRNA in hypothalamic parvocellular paraventricular nuclei (PVN) and ACTH in pituitary and plasma. B restored these toward normal. GDX blocked the increase in AVP but not CRH mRNA and reduced plasma, but not pituitary ACTH in ADX rats. GDX+T restored increased AVP mRNA in ADX rats, although plasma ACTH remained decreased. Stress responses. Restraint-induced ACTH responses were elevated in ADX gonadally intact rats, and B reduced these toward normal. GDX in adrenal-intact and ADX+B rats increased ACTH responses. Without B, T did not affect ACTH; together with B, T restored ACTH responses to normal. The magnitude of ACTH responses to stress was paralleled by similar effects on the number of c-fos staining neurons in the hypophysiotropic PVN. We conclude that gonadal regulation of ACTH responses to ADX is determined by T dependent effects on AVP biosynthesis, whereas CRH biosynthesis is B-dependent. Stress-induced ACTH release is not explained by B and T interactions at the PVN, but is determined by B- and T-dependent changes in drive to PVN motorneurons.  (+info)

The influence of sex and gonadectomy on the hypothalamo-pituitary-adrenal axis of the sheep. (31/1772)

There is a sex difference in the hypothalamo-pituitary-adrenal (HPA) axis of many species, although there are sparse data on the sheep. In the present study we have compared the HPA axes of intact and gonadectomised adult male and female sheep at the level of the median eminence, pituitary and adrenal glands using a variety of in vitro approaches. The concentration of arginine vasopressin (AVP) was higher (P<0.01) in the median eminence of male than female sheep, and was also elevated by gonadectomy of either sex (P<0.01). The concentration of corticotrophin-releasing factor (CRF) in the median eminence did not differ between the sexes, but was also elevated in both sexes following gonadectomy (P<0.01). Anterior pituitary pro-opiomelanocortin mRNA concentrations were higher (P<0.05) in intact male sheep than in intact females, with the levels in gonadectomised animals of both sexes being intermediate. In contrast to this finding, basal ACTH secretion from anterior pituitary cells was higher (P<0.05) in cultures derived from female sheep than those from males, but gonadectomy was without effect. There was no effect of sex or gonadectomy on in vitro ACTH secretion in response to AVP, CRF or the combination of AVP and CRF, and in all cases the combination of AVP and CRF generated greater (P<0.0001) ACTH secretion than AVP alone. AVP alone was more effective (P<0.01) than CRF alone as an ACTH secretagogue. The adrenal glands were larger (P<0.05) in female than male sheep, with no effect of gonadectomy. Basal cortisol production was greatest (P<0.05) in cultures of adrenal cells from intact male sheep, though ACTH- and 8BrcAMP-induced cortisol production was greater in the cultures of cells from females (P=0.05); there were no effects of gonadectomy. Cultures of adrenocortical cells from male sheep had greater (P<0.05) basal cAMP production, but ACTH-stimulated cAMP production did not differ between any of the groups of animals. These findings show a range of differences in the HPA axis of male and female sheep. Furthermore, they suggest that the heightened activity of the axis in the female occurs primarily due to differences at the level of the adrenal gland, and that greater adrenal responsiveness of female animals is due to differences in the latter stages of steroidogenesis, rather than an effect on ACTH signal transduction at its receptor.  (+info)

Central administration of corticotrophin releasing hormone but not arginine vasopressin stimulates the secretion of luteinizing hormone in rams in the presence and absence of testosterone. (32/1772)

This study tested the hypothesis that central administration of corticotrophin-releasing hormone (CRH) and/or arginine vasopressin (AVP) will affect the secretion of LH in rams and that testosterone is necessary for these actions to occur. Plasma LH levels were measured in castrated rams during 1 h infusion of either 100 microliter vehicle/mock cerebrospinal fluid (CSF) or mock CSF containing 25 microgram CRH, 25 microgram AVP or 25 microgram of each peptide through guide cannulae into the third cerebral ventricle. These intracerebroventricular (i.c.v.) infusions were given to the castrated rams following injections (i.m.) each 12 h of oil or 8 mg testosterone propionate for 7 days. Blood samples were collected every 10 min for 4 h before i.c.v. infusion, during infusion and for 4 h following the infusion. Infusion of vehicle did not affect any endocrine parameters. In contrast, the plasma concentrations of LH and the amplitude of LH pulses were increased significantly during and following infusion of CRH, and this effect was not influenced by whether the castrated rams were treated with testosterone propionate or whether the CRH was administered in combination with AVP. Infusion of AVP alone did not affect LH secretion. The frequency of LH pulses and the plasma concentrations of FSH did not change with any of the i.c.v. treatments. The plasma concentrations of cortisol were significantly increased by CRH and AVP infusions. The plasma concentrations of cortisol achieved during and following i.c.v. infusion of CRH and AVP combined were greater than the concentrations achieved as a result of treatment with AVP alone but were similar to those with CRH. There was no effect of testosterone propionate on cortisol levels. These results show that CRH, but not AVP, is capable of acting either centrally or at the pituitary level to increase the secretion of LH in rams and these actions are not affected by testosterone. The stimulatory effects of CRH on LH secretion are to increase the amplitude of GnRH pulses and/or the responsiveness of the pituitary to the actions of GnRH with no effect on the frequency of GnRH pulses. The secretion of FSH in rams is not influenced by either CRH or AVP. The effect of CRH to increase LH pulse amplitude occurs in the face of increased cortisol levels, further reinforcing our belief that this adrenal steroid does not affect the reproductive axis in this species.  (+info)