Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. (65/335)

The number and shape of dendritic spines are influenced by activity and regulated by molecules that organize the actin cytoskeleton of spines. Cortactin is an F-actin binding protein and activator of the Arp2/3 actin nucleation machinery that also interacts with the postsynaptic density (PSD) protein Shank. Cortactin is concentrated in dendritic spines of cultured hippocampal neurons, and the N-terminal half of the protein containing the Arp2/3 and F-actin binding domains is necessary and sufficient for spine targeting. Knockdown of cortactin protein by short-interfering RNA (siRNA) results in depletion of dendritic spines in hippocampal neurons, whereas overexpression of cortactin causes elongation of spines. In response to synaptic stimulation and NMDA receptor activation, cortactin redistributes rapidly from spines to dendritic shaft, correlating with remodeling of the actin cytoskeleton, implicating cortactin in the activity-dependent regulation of spine morphogenesis.  (+info)

The novel dominant mutation Dspd leads to a severe spermiogenesis defect in mice. (66/335)

Spermiogenesis is a complex process that is regulated by a plethora of genes and interactions between germ and somatic cells. Here we report a novel mutant mouse strain that carries a transgene insertional/translocational mutation and exhibits dominant male sterility. We named the mutation dominant spermiogenesis defect (Dspd). In the testes of Dspd mutant mice, spermatids detached from the seminiferous epithelium at different steps of the differentiation process before the completion of spermiogenesis. Microinsemination using spermatids collected from the mutant testes resulted in the birth of normal offspring. These observations indicate that the major cause of Dspd infertility is (are) a defect(s) in the Sertoli cell-spermatid interaction or communication in the seminiferous tubules. Fluorescent in situ hybridization (FISH) analysis revealed a translocation between chromosomes 7F and 14C at the transgene insertion site. The deletion of a genomic region of chromosome 7F greater than 1 megabase and containing at least six genes (Cttn, Fadd, Fgf3, Fgf4, Fgf15, and Ccnd1) was associated with the translocation. Cttn encodes the actin-binding protein cortactin. Immunohistochemical analysis revealed localization of cortactin beside elongated spermatids in wild-type testes; abnormality of cortactin localization was found in mutant testes. These data suggest an important role of cortactin in Sertoli cell-spermatid interactions and in the Dspd phenotype.  (+info)

Participation of p97Eps8 in Src-mediated transformation. (67/335)

Histone acetylase and histone deacetylase are two crucial enzymes that determine the structure of chromatin, regulating gene expression. In this study, we observed that trichostatin A (TSA), a specific histone deacetylase inhibitor, could effectively inhibit the growth of v-Src-transformed (IV5) cells and abrogate their ability to form colonies in soft agar. Further analysis demonstrated that, although TSA reduced the expression of Eps8 in a dose- and time-dependent manner, both the protein expression and kinase activity of v-Src remained constant, and the abundance and phosphotyrosine levels of Src substrates, including cortactin, focal adhesion kinase, p130(Cas), paxillin, and Shc, were not altered. Notably, removal of TSA from the medium restored not only the expression of Eps8, but also cellular growth. Northern and reverse transcription-PCR analyses revealed the significant reduction of eps8 transcripts in TSA-treated IV5 cells relative to control cells. When active Src-expressing chicken embryonic cells were forced to overexpress p97(Eps8), they became resistant to TSA-mediated anti-proliferation. Furthermore, using small interference RNA of eps8, we demonstrated the requirement for Eps8 in IV5 cell proliferation. Thus, our results highlight a critical role for p97(Eps8) in TSA-exerted growth inhibition of v-Src-transformed cells.  (+info)

Cortactin modulates cell migration and ring canal morphogenesis during Drosophila oogenesis. (68/335)

Cortactin is a Src substrate that interacts with F-actin and can stimulate actin polymerization by direct interaction with the Arp2/3 complex. We have isolated complete loss-of-function mutants of the single Drosophila cortactin gene. Mutants are viable and fertile, showing that cortactin is not an essential gene. However, cortactin mutants show distinct defects during oogenesis. During oogenesis, Cortactin protein is enriched at the F-actin rich ring canals in the germ line, and in migrating border cells. In cortactin mutants, the ring canals are smaller than normal. A similar phenotype has been observed in Src64 mutants and in mutants for genes encoding Arp2/3 complex components, supporting that these protein products act together to control specific processes in vivo. Cortactin mutants also show impaired border cell migration. This invasive cell migration is guided by Drosophila EGFR and PDGF/VEGF receptor (PVR). We find that accumulation of Cortactin protein is positively regulated by PVR. Also, overexpression of Cortactin can by itself induce F-actin accumulation and ectopic filopodia formation in epithelial cells. We present evidence that Cortactin is one of the factors acting downstream of PVR and Src to stimulate F-actin accumulation. Cortactin is a minor contributor in this regulation, consistent with the cortactin gene not being essential for development.  (+info)

Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. (69/335)

Helicobacter pylori is the causative agent of a variety of gastric diseases, but the clinical relevance of bacterial virulence factors is still controversial. Virulent strains carrying the cag pathogenicity island (cagPAI) are thought to be key players in disease development. Here, we have compared cagPAI-dependent in vitro responses in H. pylori isolates obtained from 75 patients with gastritis, peptic ulcer, and gastric cancer (n = 25 in each group). AGS gastric epithelial cells were infected with each strain and assayed for (i) CagA expression, (ii) translocation and tyrosine phosphorylation of CagA, (iii) c-Src inactivation, (iv) cortactin dephosphorylation, (v) induction of actin cytoskeletal rearrangements associated with cell elongation, (vi) induction of cellular motility, and (vii) secretion of interleukin-8. Interestingly, we found high but similar prevalences of all of these cagPAI-dependent host cell responses (ranging from 56 to 80%) among the various groups of patients. This study revealed CagA proteins with unique features, CagA subspecies of various sizes, and new functional properties for the phenotypic outcomes. We further showed that induction of AGS cell motility and elongation are two independent processes. Our data corroborate epidemiological studies, which indicate a significant association of cagPAI presence and functionality with histopathological findings in gastritis, peptic ulcer, and gastric cancer patients, thus emphasizing the importance of the cagPAI for the pathogenicity of H. pylori. Nevertheless, we found no significant association of the specific H. pylori-induced responses with any particular patient group. This may indicate that the determination of disease development is highly complex and involves multiple bacterial and/or host factors.  (+info)

RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. (70/335)

Actin filaments transiently associate with the endocytic machinery during clathrin-coated vesicle formation. Although several proteins that might mediate or regulate this association have been identified, in vivo demonstration of such an activity has not been achieved. Huntingtin interacting protein 1R (Hip1R) is a candidate cytoskeletal-endocytic linker or regulator because it binds to clathrin and actin. Here, Hip1R levels were lowered by RNA interference (RNAi). Surprisingly, rather than disrupting the transient association between endocytic and cytoskeletal proteins, clathrin-coated structures (CCSs) and their endocytic cargo became stably associated with dynamin, actin, the Arp2/3 complex, and its activator, cortactin. RNAi double-depletion experiments demonstrated that accumulation of the cortical actin-endocytic complexes depended on cortactin. Fluorescence recovery after photobleaching showed that dynamic actin filament assembly can occur at CCSs. Our results provide evidence that Hip1R helps to make the interaction between actin and the endocytic machinery functional and transient.  (+info)

Effect of Fgd1 on cortactin in Arp2/3 complex-mediated actin assembly. (71/335)

Mutations in faciogenital dysplasia protein (Fgd1) result in the human disease faciogenital dysplasia (FGDY). Fgd1 contains a RhoGEF domain specific for Cdc42. Fgd1 also contains a Src homology (SH3) binding domain (SH3-BD) that binds directly to the SH3 domain of cortactin, which promotes actin assembly by actin-related protein (Arp)2/3 complex. Here, we report the effect of ligation of cortactin's SH3 domain by the Fgd1 SH3-BD on actin polymerization in vitro. Glutathione S-transferase (GST)-fused Fgd1 SH3-BD enhanced the ability of cortactin to stimulate Arp2/3-mediated actin polymerization. However, a synthetic peptide containing only the SH3-BD sequence had no effect. The SH3-BD peptide bound to cortactin and inhibited the effect of GST-Fgd1 SH3-BD, suggesting that GST dimerization was responsible for the stimulating effect of GST-Fgd1 SH3-BD. When GST-Fgd1 SH3-BD was prepared as a heterodimer with a control GST fusion protein (GST-Pac1), no stimulatory effect on actin polymerization was observed. In addition, when cortactin was dimerized via its N-terminus, away from the C-terminal SH3 domain, actin polymerization with Arp2/3 complex increased markedly, compared to free cortactin. Thus, cortactin ligated by Fgd1 is fully active, indicating that the cell can use Fgd1 to target actin assembly. Moreover, if Fgd1 is multimerized, then cortactin's activity should be enhanced. Fgd1 and cortactin may participate as scaffolds and signal transducers in a positive feedback cycle to promote actin assembly at the cell cortex.  (+info)

Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. (72/335)

Classical cadherin adhesion molecules are key determinants of cell-cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell-cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin-actin cooperation that supports productive contact formation.  (+info)