Microaerophilic conditions permit to mimic in vitro events occurring during in vivo Helicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling. (41/335)

Molecular dissection of the mechanisms underlying Helicobacter pylori infection suffers from the lack of in vitro systems mimicking in vivo observations. A system was developed whereby human epithelial cells (Caco-2) grown as polarized monolayers and bacteria can communicate with each other under culture conditions optimal for each partner. Caco-2 cells grown on filter supports were inserted in a vertical position into diffusion chambers equilibrated with air and 5% CO(2) at their basolateral surface (aerophilic conditions) and 5% CO(2), 5% O(2), 90% N(2) (microaerophilic conditions) in the apical compartment. Remarkably, the epithelial polarized layer was stable under these asymmetric culture conditions for at least 24 h, and the presence of Caco-2 cells was necessary to maintain H. pylori growth. In contrast to previous studies conducted with non-polarized Caco-2 cells and other cell lines kept under aerophilic conditions, we found H. pylori-dependent stimulation of cytokine secretion (MCP-1 (monocyte chemoattractant protein-1), GRO-alpha (growth-regulated oncogene-alpha), RANTES (regulated on activation normal T cell expressed and secreted)). This correlated with nuclear translocation of NF-kappaB p50 and p65 subunits. Tyrosine phosphorylation of nine cellular proteins was induced or enhanced; we identified p120(RasGAP), p190(RhoGAP), p62dok (downstream of tyrosine kinases), and cortactin as H. pylori-inducible targets. Moreover, reduction of H. pylori urease expression was observed in adherent bacteria as compared with bacteria in suspension. In addition to mimicking several observations seen in the inflamed gastric mucosa, the novel in vitro system was allowed to underscore complex cellular events not seen in classical in vitro analyses of microaerophilic bacteria-epithelial cell cross-talk.  (+info)

The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. (42/335)

Adhesion molecules such as E-selectin and intercellular adhesion molecule-1 (ICAM-1) expressed on endothelial cells (ECs) at sites of inflammation play an important role in the recruitment of leukocytes from the bloodstream into extravascular tissue. However, little is known about the signaling pathways that are initiated in ECs following adhesion molecule engagement. Here, we report that an 85-kDa protein becomes tyrosine phosphorylated in human ECs following leukocyte adhesion or upon antibody-induced clustering of E-selectin or ICAM-1. Through immunoprecipitation experiments, this protein was identified as cortactin, a cytoskeleton-binding molecule and prominent src substrate involved in cell adhesion. Following adhesion molecule clustering, cortactin phosphorylation was inhibited by the src family kinase inhibitor PP2. Both src and tyrosine-phosphorylated cortactin were found to be associated with E-selectin and ICAM-1 following adhesion of antibody-coated beads to ECs. PP2 did not inhibit the association of cortactin with E-selectin and ICAM-1; however, PP2 inhibited adhesion between paraformaldehyde-fixed THP-1 cells and ECs. This decrease in adhesion correlated with inhibition of adhesion molecule clustering on PP2-treated ECs at sites of THP-1 attachment. These findings implicate src and cortactin as mediators of leukocyte/EC interactions at sites of inflammation by regulating adhesion molecule clustering on ECs.  (+info)

Tyrosine phosphorylation of Kv1.2 modulates its interaction with the actin-binding protein cortactin. (43/335)

Tyrosine phosphorylation evokes functional changes in a variety of ion channels. Modulation of the actin cytoskeleton also affects the function of some channels. Little is known about how these avenues of ion channel regulation may interact. We report that the potassium channel Kv1.2 associates with the actin-binding protein cortactin and that the binding is modulated by tyrosine phosphorylation. Immunocytochemical and biochemical analyses show that Kv1.2 and cortactin co-localize to the cortical actin cytoskeleton at the leading edges of the cell. Binding assays using purified recombinant proteins reveal a 19-amino acid span within the carboxyl terminus of Kv1.2 that is necessary for direct cortactin binding. Phosphorylation of specific tyrosines within the C terminus of Kv1.2 attenuates that binding. In HEK293 cells, activation of the M1 muscarinic acetylcholine receptor evokes tyrosine phosphorylation-dependent suppression of Kv1.2 ionic current. We show that M1 receptor activation also reduces the interaction of cortactin with Kv1.2 and that mutant Kv1.2 channels deficient for cortactin binding exhibit strongly attenuated ionic current. These results demonstrate a dynamic, phosphorylation-dependent interaction between Kv1.2 and the actin cytoskeleton-binding protein cortactin and suggest a role for that interaction in the regulation of Kv1.2 ionic current.  (+info)

Lymphocyte trafficking through the blood-brain barrier is dependent on endothelial cell heterotrimeric G-protein signaling. (44/335)

We have previously shown that the engagement of ICAM-1 on brain endothelial cells (EC) results in the propagation of EC signaling pathways that are necessary for efficient lymphocyte migration across the tight vascular barriers of the brain. Signaling via this receptor alone, however, is unlikely to explain the differential recruitment of leukocytes at different vascular beds. In this study, we investigated the role of EC heterotrimeric G-protein-mediated signaling in supporting transendothelial migration of T lymphocytes. Treatment of brain EC monolayers with pertussis toxin (PTX) resulted in ADP-ribosylation of G-protein alpha subunits and inhibition (>80%) of lymphocyte migration without affecting lymphocyte adhesion. Aortic and high endothelial venule EC treated identically resulted in only partial inhibition of lymphocyte migration (<40%). Expression of ribosylation-resistant (PTX-insensitive) G-protein alpha subunits in brain EC restored their ability to support lymphocyte migration after pretreatment with PTX. Treatment of brain EC with PTX did not inhibit ICAM-1-stimulated tyrosine phosphorylation of focal adhesion kinase, suggesting the effects of PTX in inhibiting EC facilitation of lymphocyte migration are distinct from activation of EC through ICAM-1. We conclude that a heterotrimeric G-protein-mediated signaling pathway in brain EC is essential for efficient transendothelial migration of T lymphocytes into the brain.  (+info)

Interaction of cortactin and N-WASp with Arp2/3 complex. (45/335)

BACKGROUND: Dynamic actin assembly is required for diverse cellular processes and often involves activation of Arp2/3 complex. Cortactin and N-WASp activate Arp2/3 complex, alone or in concert. Both cortactin and N-WASp contain an acidic (A) domain that is required for Arp2/3 complex binding. RESULTS: We investigated how cortactin and the constitutively active VCA domain of N-WASp interact with Arp2/3 complex. Structural studies showed that cortactin is a thin, elongated monomer. Chemical crosslinking studies demonstrated selective interaction of the Arp2/3 binding NTA domain of cortactin (cortactin NTA) with the Arp3 subunit and VCA with Arp3, Arp2, and ARPC1/p40. Cortactin NTA and VCA crosslinking to the Arp3 subunit were mutually exclusive; however, cortactin NTA did not inhibit VCA crosslinking to Arp2 or ARPC1/p40, nor did it inhibit activation of Arp2/3 complex by VCA. We conducted an experiment in which a saturating concentration of cortactin NTA modestly lowered the binding affinity of VCA for Arp2/3; the results of this experiment provided further evidence for ternary complex formation. Consistent with a common binding site on Arp3, a saturating concentration of VCA abolished binding of cortactin to Arp2/3 complex. CONCLUSIONS: Under certain circumstances, cortactin and N-WASp can bind simultaneously to Arp2/3 complex, accounting for their synergy in activation of actin assembly. The interaction of cortactin NTA with Arp2/3 complex does not inhibit Arp2/3 activation by N-WASp, despite competition for a common binding site located on the Arp3 subunit. These results suggest a model in which cortactin may bridge Arp2/3 complex to actin filaments via Arp3 and N-WASp activates Arp2/3 complex by binding Arp2 and/or ARPC1/p40.  (+info)

Osmotic stress-induced remodeling of the cortical cytoskeleton. (46/335)

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.  (+info)

Actin nucleation: cortactin caught in the act. (47/335)

A variety of activators stimulate Arp2/3 complex to nucleate branched actin filament structures. New results provide important biochemical and structural information for activation by the proteins cortactin and N-WASP.  (+info)

Dynamin2 and cortactin regulate actin assembly and filament organization. (48/335)

The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  (+info)