Metal ion release from new and recycled stainless steel brackets. (25/201)

As orthodontic appliances can corrode with time in the oral environment, the aim of this study was to compare the release of metal ions from new and recycled brackets immersed in buffers of different pH values over a 48 week period. To simulate commercial recycling, the stainless steel brackets were divided into two groups: new and recycled. The bases of the latter were coated with adhesive and the brackets were heat treated before being immersed in the test solution for 48 weeks. The release of nickel, chromium, iron, copper, cobalt and manganese ions was analysed by atomic absorption spectrophotometry. Differences were compared using one-way analysis of variance. The results showed that recycled brackets released more ions than new brackets (P < 0.05). Brackets immersed in solutions of pH 4 released more ions than those immersed in solutions of pH 7, and the total amount of ions released increased with time over the 48 week period (P < 0.05). This study demonstrates that both new and recycled brackets will corrode in the oral environment. To avoid clinical side-effects, metal brackets should be made more resistant to corrosion, and recycled brackets should not be used.  (+info)

Corrosion behavior and microstructures of experimental Ti-Au alloys. (26/201)

Anodic polarization was performed in 0.9% NaCl and 1% lactic acid solutions to characterize the relationship between the corrosion behavior and microstructures of cast Ti-Au (5-40%) alloys. An abrupt increase in the current density occurred at approximately 0.6 V vs. SCE for the 30% and 40% Au alloys in the 0.9% NaCl solution. The microstructures after corrosion testing indicated that this breakdown may have been caused by the preferential dissolution of the Ti3Au. However, the potential for preferential dissolution was higher than the breakdown potential of stainless steel or Co-Cr alloy, which meant that the corrosion resistance of the Ti-Au alloys was superior. In 1% lactic acid solution, the corrosion resistance of the Ti-Au alloys was excellent, with no breakdown at any composition. In the present test solutions, the Ti-Au alloys up to 20% Au had good corrosion resistance comparable to that for pure titanium.  (+info)

In vitro corrosion characteristics of commercially available orthodontic wires. (27/201)

The corrosion characteristics of orthodontic alloy wires were investigated both in as-received and grinded conditions in 0.9% NaCl solution by atomic absorption spectrophotometry and potentiodynamic polarization measurements. The amount of each metal ion released from most alloys was larger for the grinded wires than for the as-received wires (p<0.01). The fact that the beta-Ti alloy wire (Ti-Mo-Zr) does not contain allergenic metals such as Ni, Co, and Cr, and the finding that resistance to both general and localized corrosion is the highest among the six wires investigated suggest that this wire is the most biocompatible orthodontic wire. Since a small amount of Ni, Cr or Co ions were released from Ni-Ti, Co-Cr and stainless steel wires, special attention should be paid during their clinical use for patients with allergic tendencies.  (+info)

Effects of gastric acid on euro coins: chemical reaction and radiographic appearance after ingestion by infants and children. (28/201)

OBJECTIVES: This study investigated whether coins of the new European currency (euro) corrode when they are exposed to gastric acid, and whether this change can be detected radiographically. METHODS: The eight different denominations of coins were immersed for seven days in 0.15 N hydrochloride acid (HCl), which corresponds to the level of post-prandial gastric acid. A Swedish crown coin and three different Austrian schilling coins were used as controls. The coins were weighed and radiographed daily to evaluate visible corrosions and HCl was analysed daily for possible dissolved substances. RESULTS: All coins lost weight within 24 hours after exposure to HCl. The 1, 2, and 5 euro cent coins developed changes that were visible on radiographs. The weights of all coins decreased by 0.43% to 11.30% during one week. The dissolved substances measured in the HCl corresponded to the different metals and alloys of the coins, except for copper, which does not dissolve in HCl. The highest absolute weight loss was observed in the Swedish crown coin (0.67 g), and the highest relative weight loss in the 1 Austrian schilling coin (11.30%). The two coins that showed the highest absolute and relative weight losses were the 2 euro (0.54 g or 6.35%) and the 1 euro (0.48 g or 6.39%) coin. CONCLUSIONS: A higher rate of toxicity for the new European coins compared with coins of other currencies is not expected, unless a massive coin ingestion occurs.  (+info)

Corrosion of cemented titanium femoral stems. (29/201)

Cemented titanium stems in hip arthroplasty are associated with proximal cement-stem ebonding and early failure. This was well publicised with the 3M Capital hip. However, corrosion in this setting has been reported with only one stem design and is less widely accepted. We present a series of 12 cemented titanium Furlong Straight Stems which required revision at a mean of 78 months for thigh pain. At revision the stems were severely corroded in a pattern which was typical of crevice corrosion. Symptoms were eliminated after revision to an all-stainless steel femoral prosthesis of the same design. We discuss the likely causes for the corrosion. The combination of a titanium stem and cement appears to facilitate crevice corrosion.  (+info)

Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste. (30/201)

Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca(2+) and Si(2+), the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr(2+) and Cs(+), which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.  (+info)

Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride. (31/201)

The purpose of this study was to investigate the correlation between corrosion resistance and surface composition of an experimental Ti-20 mass% Cr casting alloy in a saline solution containing fluoride. The alloy had a greater resistance to corrosion in a fluoride-containing saline solution than did commercially pure titanium. However, with confirmed dissolution of titanium and chromium, it meant that the fluoride in the saline solution corroded the alloy slightly. X-ray photoelectron spectroscopy analysis revealed that the surface composition of the alloy consisted of titanium and chromium oxides containing hydroxide. The [Ti]/([Ti] + [Cr]) ratio in the surface oxide film decreased when immersed in fluoride-containing saline solution, that is, the surface oxide film became chromium-rich oxide. Therefore, the alloy obtained good corrosion resistance to fluoride due to formation of a chromium-rich oxide film.  (+info)

A stainless steel bracket for orthodontic application. (32/201)

Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P < 0.05). Micrographs of the Mini-diamond and Archist showed precipitates in the grains and around their boundaries. SR-50A showed the only austenitic phase and the highest polarization resistance of the tested samples. SR-50A also had the highest corrosion resistance [SR-50A, Mini-diamond and Archist were 0.9 x 10(-3), 3.7 x 10(-3), and 7.4 x 10(-3) mm per year (mpy), respectively], in the artificial saliva. The frictional force of SR-50A decreased over time, but that of Mini-diamond and Archist increased. Therefore, SR-50A is believed to have better frictional properties to orthodontic wire than Mini-diamond and Archist. Cytotoxic results showed that the response index of SR-50A was 0/1 (mild), Mini-diamond 1/1 (mild+), and Archist 1/2 (mild+). SR-50A showed greater biocompatibility than either Mini-diamond or Archist. It is concluded that the SR-50A bracket has good frictional property, corrosion resistance and biocompatibility with a lower probability of allergic reaction, compared with conventionally used SS brackets.  (+info)