Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. (1/28)

Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495-644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.  (+info)

Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. (2/28)

It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara, Betula pubescens Ehrh., and red osier dogwood (Cornus sericea), in which XRPCs have been reported to respond by extracellular freezing. Cryo-scanning electron microscopy observations revealed that slow cooling of xylem to -80 degrees C resulted in intracellular freezing in the majority of XRPCs in S. sachalinensis, an indication that these XRPCs had been deep supercooled. In contrast, in the majority of XRPCs in P. sieboldii, B. platyphylla, B. pubescens, and red osier dogwood, slow cooling to -80 degrees C produced slight cytorrhysis without clear evidence of intracellular freezing, suggesting that these XRPCs might respond by extracellular freezing. In these XRPCs exhibited putative extracellular freezing; however, deep etching revealed the apparent formation of intracellular ice crystals in restricted local areas. To confirm the occurrence of intracellular freezing, we rewarmed these XRPCs after cooling and observed very large intracellular ice crystals as a result of the recrystallization. Thus, the XRPCs in all the boreal hardwoods that we examined responded by deep supercooling that was accompanied with incomplete desiccation. From these results, it seems possible that limitations to the deep-supercooling ability of XRPCs might be a limiting factor for adaptation of hardwoods to cold climates.  (+info)

Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. (3/28)

The resorption protection hypothesis, which states that anthocyanins protect foliar nutrient resorption during senescence by shielding photosynthetic tissues from excess light, was tested using wild-type (WT) and anthocyanin-deficient mutants of three deciduous woody species, Cornus sericea, Vaccinium elliottii (Chapmn.), and Viburnum sargentii (Koehne). WT Betula papyrifera (Marsh) was included to compare the senescence performance of a species that does not produce anthocyanins in autumn. Plants were subjected to three environmental regimes during senescence: an outdoor treatment; a 5-d high-stress (high light and low temperature) treatment followed by transfer to a low-stress environment and a low-stress treatment that served as control. In the outdoor treatment, the appearance of anthocyanins in senescing leaves of WT plants was concomitant with the development of photo-inhibition in mutant plants of all three anthocyanin-producing species. In the high-stress environment, WT plants maintained higher photochemical efficiencies than mutants and were able to recover when transferred to the low-stress environment, whereas mutant leaves dropped while still green and displayed signs of irreversible photooxidative damage. Nitrogen resorption efficiencies and proficiencies of all mutants in both stressful treatments were significantly lower than the WT counterparts. B. papyrifera displayed photochemical efficiencies and nitrogen resorption performance comparable with the highest of the anthocyanin-producing species in all three senescing environments, indicating a photoprotective strategy divergent from the other species studied. These results strongly support the resorption protection hypothesis of anthocyanins in senescing leaves.  (+info)

Morroniside protects cultured human umbilical vein endothelial cells from damage by high ambient glucose. (4/28)

AIM: To determine whether morroniside, a compound in Cornus officinalis Sieb et Zucc can prevent cultured human umbilical vein endothelial cells (HUVEC) from damage by high ambient glucose. METHODS: HUVEC was incubated in glucose, 5 or 30 mmol/L, either alone or in the presence of morroniside (final concentration 100, 10, and 1 micromol/L, respectively) for 48 h. The proliferation of HUVEC was quantified by MTT method; its cycle was analyzed by flow cytometry; morphological change was observed with fluorescence microscopy. RESULTS: Survival of HUVEC cultured in high ambient glucose was significantly decreased when compared to that in normal concentration of glucose (P<0.01). High ambient glucose also lowered the rate of cells entering into S-phase, along with severe morphological damage. With the intervention of morroniside (final concentration 100 and 10 micromol/L), the cell survival was significantly recovered (P<0.01, P<0.05, respectively), accompanied with increased S-phase rate and less extent of morphological damage. CONCLUSION: Morroniside protected HUVEC against high ambient glucose induced injury, which suggested that morroniside could exert a beneficial effect on preventing diabetic angiopathies.  (+info)

Phylogenetic analyses in cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins. (5/28)

The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.  (+info)

Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. (6/28)

The present study was conducted to determine whether iridoid total glycoside from Cornus officinalis was effective in regulating expression of transforming growth factor beta 1 (TGF-beta1) and preventing overdeposition of extracellular matrix (ECM) in a diabetes state. An experimental rat model of diabetic nephropathy (DN) was successfully induced by one intraperitoneal injection of streptozotocin at a dose of 60 mg x kg(-1) and maintained for 12 weeks. All rats had free access to standard chow and water. Four groups: normal control, diabetic control, diabetic rats with aminoguanidine treatment and diabetic rats with iridoid total glycoside treatment were used in this experiment. All treatments were administered by intragastric gavage (ig). At the end of the experiment, serum was collected for ELISA determination of TGF-beta1 protein level; renal cortex was dissected for reverse transcription polymerase chain reaction (RT-PCR) analysis of its mRNA expression; and immunohistochemistry was introduced to observe ECM deposition. A significantly higher level of protein and mRNA expression of TGF-beta1, and also overdeposition of fibronectin and laminin was found in diabetic rats. Both iridoid total glycoside and aminoguanidine were effective in decreasing serum protein level and glomerular mRNA expression of TGF-beta1, and in preventing renal overdeposition of fibronectin and laminin. This study suggests that iridoid total glycoside is a beneficial agent for prevention and therapy of DN.  (+info)

Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors. (7/28)

Rhagoletis pomonella is a model for sympatric speciation (divergence without geographic isolation) by means of host-plant shifts. Many Rhagoletis species are known to use fruit odor as a key olfactory cue to distinguish among their respective host plants. Because Rhagoletis rendezvous on or near the unabscised fruit of their hosts to mate, behavioral preferences for fruit odor translate directly into premating reproductive isolation among flies. Here, we report that reciprocal F(1) hybrids between the apple and hawthorn host races of R. pomonella, as well as between the host races and an undescribed sibling species infesting Cornus florida (flowering dogwood) do not respond to host fruit volatiles in wind-tunnel assays at doses that elicit maximal directed flight in parental flies. The reduced ability of hybrids to orient to fruit volatiles could result from a conflict between neural pathways for preference and avoidance behaviors, and it suggests that hybrids might suffer a fitness disadvantage for finding fruit in nature. Therefore, host-specific mating may play a dual role as an important postzygotic as well as a premating reproductive barrier to isolate sympatric Rhagoletis flies.  (+info)

Beneficial effect of Corni Fructus, a constituent of Hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in Streptozotocin-treated diabetic rats. (8/28)

Previous investigations have demonstrated that Hachimi-jio-gan, a Chinese prescription consisting of eight crude drugs, has a therapeutic potential in diabetes and diabetic nephropathy, using these model rats. To add to these findings, we performed this study to assess whether one of the crude drugs, Corni Fructus (Cornus officinalis SIEB. et ZUCC.), had an effect on streptozotocin-induced diabetic rats as a major active constituent, compared with an inhibitor of advanced glycation end-product (AGE) formation, aminoguanidine. Diabetic rats were orally administrated Corni Fructus extract (50, 100, 200 mg/kg body weight/d) or aminoguanidine (100 mg/kg body weight/d). Treatment with Corni Fructus for 10 d suppressed hyperglycemia, proteinuria, renal AGE formation, and related protein expressions, i.e., receptor for AGEs, nuclear factor-kappaB, transforming growth factor-beta1, and Nepsilon-(carboxymethyl)lysine, in the same way as with aminoguanidine. However, improvement of renal function, shown via serum creatinine (Cr) and Cr clearance, was superior to aminoguanidine treatment. In conclusion, the present study supported the hypothesis that Corni Fructus plays an important role against diabetic pathogenesis, i.e., reducing glucose toxicities, up-regulating renal function, and consequently ameliorating glycation-associated renal damage; thus, this study may provide a new recognition of crude drugs to clarify the mechanisms of Chinese prescriptions.  (+info)