Cornifin, a cross-linked envelope precursor in keratinocytes that is down-regulated by retinoids. (25/100)

In this study, we have characterized the cDNA clone SQ37 that was isolated previously from a rabbit squamous cell library. The gene encodes a 14-kDa protein that appears to function as a component of the cross-linked envelope in squamous differentiating cells. The protein, which has been named cornifin, has a high content of proline (31%), glutamine (20%), and cysteine (11%) and contains 13 repeats of an octapeptide (consensus sequence, EPCQPKVP) at its C terminus. SQ37 mRNA and protein are induced during squamous differentiation of rabbit tracheal (RbTE) cells and human epidermal keratinocytes. This induction is repressed by retinoids. Immunohistochemical studies reveal SQ37 immunoreactivity in fragmented cross-linked envelopes from squamous-differentiated RbTE cells and in the suprabasal layers of the epidermis. In situ hybridization analysis showed that the presence of SQ37 mRNA is restricted to the suprabasal layers. Treatment of RbTE cells with a Ca2+ ionophore induces cross-linking of the SQ37 protein into higher molecular weight complexes. This cross-linking reaction appears to be mediated by transglutaminase type I. Our observations suggest that the protein encoded by SQ37 participates in the assembly of the cross-linked envelope.  (+info)

Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. (26/100)

Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  (+info)

Small proline-rich protein 1A is a gp130 pathway- and stress-inducible cardioprotective protein. (27/100)

The interleukin-6 cytokines, acting via gp130 receptor pathways, play a pivotal role in the reduction of cardiac injury induced by mechanical stress or ischemia and in promoting subsequent adaptive remodeling of the heart. We have now identified the small proline-rich repeat proteins (SPRR) 1A and 2A as downstream targets of gp130 signaling that are strongly induced in cardiomyocytes responding to biomechanical/ischemic stress. Upregulation of SPRR1A and 2A was markedly reduced in the gp130 cardiomyocyte-restricted knockout mice. In cardiomyocytes, MEK1/2 inhibitors prevented SPRR1A upregulation by gp130 cytokines. Furthermore, binding of NF-IL6 (C/EBPbeta) and c-Jun to the SPRR1A promoter was observed after CT-1 stimulation. Histological analysis revealed that SPRR1A induction after mechanical stress of pressure overload was restricted to myocytes surrounding piecemeal necrotic lesions. A similar expression pattern was found in postinfarcted rat hearts. Both in vitro and in vivo ectopic overexpression of SPRR1A protected cardiomyocytes against ischemic injury. Thus, this study identifies SPRR1A as a novel stress-inducible downstream mediator of gp130 cytokines in cardiomyocytes and documents its cardioprotective effect against ischemic stress.  (+info)

Small proline-rich proteins 2 are noncoordinately upregulated by IL-6/STAT3 signaling after bile duct ligation. (28/100)

Small proline-rich proteins 2 (SPRR2) are coordinately expressed with other epidermal differential complex (EDC) genes in the skin. They function as crosslinking proteins that form bridges between other proteins that comprise the cornified cell envelope, which is the major barrier against the environment. IL-6 is invariably produced at sites of biliary tract injury and IL-6-deficient (IL-6(-/-)) mice show impaired barrier function after bile duct ligation (BDL). Screening microarray analysis identified noncoordinate expression of SPRR2 as a candidate gene that is: (a) expressed in biliary epithelial cells (BEC); (b) IL-6 responsive; and (c) potentially related to biliary barrier function. Therefore, we studied in detail the regulation of BEC SPRR2A expression, in vitro; and tested the hypothesis that if BEC SPRR2 expression contributes to biliary barrier function, it should be increased after BDL in IL-6-wild type (IL-6(+/+)) mice and not in IL-6(-/-) mice. In vitro studies confirmed that IL-6/gp130-signaling, mediated primarily by signal transducer and activator of transcription 3 (STAT3), stimulated noncoordinate BEC SPRR2 expression. In vivo, noncoordinate upregulation of BEC SPRR2 expression after BDL was seen in the IL-6(+/+) mice and was unrelated to squamous metaplasia. IL-6(-/-) mice showed deficient BEC SPRR2 expression after BDL associated with impaired barrier function, as evidenced by smaller diameters of obstructed ducts, decreased bile volume, and an inability to form 'white bile' compared to IL-6(+/+) mice at 12 weeks after BDL. IL-6 replacement therapy reversed the barrier defect in IL-6(-/-) mice after BDL, coincident with recovery of SPRR2A expression. SPRR2 in diseased mouse and human liver localized subjacent to the apical plasma membrane of BEC lining bile ducts, but was more diffusely expressed throughout the cytoplasm of cholangioles. In conclusion, BEC IL-6/gp130/STAT3 signaling noncoordinately upregulates BEC SPRR2 that appears to contribute to modification of the biliary barrier under conditions of stress.  (+info)

Long-range comparison of human and mouse Sprr loci to identify conserved noncoding sequences involved in coordinate regulation. (29/100)

Mammalian epidermis provides a permeability barrier between an organism and its environment. Under homeostatic conditions, epidermal cells produce structural proteins, which are cross-linked in an orderly fashion to form a cornified envelope (CE). However, under genetic or environmental stress, specific genes are induced to rapidly build a temporary barrier. Small proline-rich (SPRR) proteins are the primary constituents of the CE. Under stress the entire family of 14 Sprr genes is upregulated. The Sprr genes are clustered within the larger epidermal differentiation complex on mouse chromosome 3, human chromosome 1q21. The clustering of the Sprr genes and their upregulation under stress suggest that these genes may be coordinately regulated. To identify enhancer elements that regulate this stress response activation of the Sprr locus, we utilized bioinformatic tools and classical biochemical dissection. Long-range comparative sequence analysis identified conserved noncoding sequences (CNSs). Clusters of epidermal-specific DNaseI-hypersensitive sites (HSs) mapped to specific CNSs. Increased prevalence of these HSs in barrier-deficient epidermis provides in vivo evidence of the regulation of the Sprr locus by these conserved sequences. Individual components of these HSs were cloned, and one was shown to have strong enhancer activity specific to conditions when the Sprr genes are coordinately upregulated.  (+info)

Suppressive effect of IL-4 on IL-13-induced genes in mouse lung. (30/100)

Although IL-4 signals through two receptors, IL-4R alpha/common gamma-chain (gamma(c)) and IL-4R alpha/IL-13R alpha1, and only the latter is also activated by IL-13, IL-13 contributes more than IL-4 to goblet cell hyperplasia and airway hyperresponsiveness in murine asthma. To determine whether unique gene induction by IL-13 might contribute to its greater proasthmatic effects, mice were inoculated intratracheally with IL-4 or IL-13, and pulmonary gene induction was compared by gene microarray and real-time PCR. Only the collagen alpha2 type VI (Ca2T6) gene and three small proline-rich protein (SPRR) genes were reproducibly induced > 4-fold more by IL-13 than by IL-4. Preferential IL-13 gene induction was not attributable to B cells, T cells, or differences in cytokine potency. IL-4 signaling through IL-4R alpha/gamma(c) suppresses Ca2T6 and SPRR gene expression in normal mice and induces these genes in RAG2/gamma(c)-deficient mice. Although IL-4, but not IL-13, induces IL-12 and IFN-gamma, which suppress many effects of IL-4, IL-12 suppresses only the Ca2T6 gene, and IL-4-induced IFN-gamma production does not suppress the Ca2T6 or SPRR genes. Thus, IL-4 induces genes in addition to IL-12 that suppress STAT6-mediated SPRR gene induction. These results provide a potential explanation for the dominant role of IL-13 in induction of goblet cell hyperplasia and airway hyperresponsiveness in asthma.  (+info)

Progression of Barrett's metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. (31/100)

We did expressional profiling on 24 paired samples of normal esophageal epithelium, Barrett's metaplasia, and esophageal adenocarcinomas. Matching tissue samples representing the three different histologic types were obtained from each patient undergoing esophagectomy for adenocarcinoma. Our analysis compared the molecular changes accompanying the transformation of normal squamous epithelium with Barrett's esophagus and adenocarcinoma in individual patients rather than in a random cohort. We tested the hypothesis that expressional profiling may reveal gene sets that can be used as molecular markers of progression from normal esophageal epithelium to Barrett's esophagus and adenocarcinoma. Expressional profiling was done using U133A GeneChip (Affymetrix), which represent approximately two thirds of the human genome. The final selection of 214 genes permitted the discrimination of differential gene expression of normal esophageal squamous epithelium, Barrett's esophagus, and adenocarcinoma using two-dimensional hierarchical clustering of selected genes. These data indicate that transformation of Barrett's esophagus to adenocarcinoma is associated with suppression of the genes involved in epidermal differentiation, including genes in 1q21 loci and corresponding to the epidermal differentiation complex. Correlation analysis of genes concordantly expressed in Barrett's esophagus and adenocarcinoma revealed 21 genes that represent potential genetic markers of disease progression and pharmacologic targets for treatment intervention. PCR analysis of genes selected based on DNA array experiments revealed that estimation of the ratios of GATA6 to SPRR3 allows discrimination among normal esophageal epithelium, Barrett's dysplasia, and adenocarcinoma.  (+info)

Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. (32/100)

Axons show a poor regenerative capacity following traumatic central nervous system (CNS) injury, partly due to the expression of inhibitors of axonal outgrowth, of which Nogo-A is considered the most important. We evaluated the acute expression of Nogo-A, the Nogo-66 receptor (NgR) and the novel small proline-rich repeat protein 1A (SPRR1A, previously undetected in brain), following experimental lateral fluid percussion (FP) brain injury in rats. Immunofluorescence with antibodies against Nogo-A, NgR and SPRR1A was combined with antibodies against the neuronal markers NeuN and microtubule-associated protein (MAP)-2 and the oligodendrocyte marker RIP, while Western blot analysis was performed for Nogo-A and NgR. Brain injury produced a significant increase in Nogo-A expression in injured cortex, ipsilateral external capsule and reticular thalamus from days 1-7 post-injury (P < 0.05) compared to controls. Increased expression of Nogo-A was observed in both RIP- and NeuN positive (+) cells in the ipsilateral cortex, in NeuN (+) cells in the CA3 region of the hippocampus and reticular thalamus and in RIP (+) cells in white matter tracts. Alterations in NgR expression were not observed following traumatic brain injury (TBI). Brain injury increased the extent of SPRR1A expression in the ipsilateral cortex and the CA3 at all post-injury time-points in NeuN (+) cells. The marked increases in Nogo-A and SPRR1A in several important brain regions suggest that although inhibitors of axonal growth may be upregulated, the injured brain is also capable of expressing proteins promoting axonal outgrowth following TBI.  (+info)