Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. (33/340)

PURPOSE: To determine whether lymphatic vessels exist in vascularized human corneas, by using immunohistochemistry with novel markers for lymphatic endothelium. METHODS: Human corneas exhibiting neovascularization secondary to keratitis, transplant rejection, trauma, and limbal insufficiency (n = 21) were assessed for lymphatic vessel content by conventional transmission electron microscopy and by immunostaining and immunoelectron microscopy with antibodies specific for the lymphatic endothelial markers, lymphatic vessel endothelial hyaluronan receptor (LYVE-1) and the 38-kDa integral membrane glycoprotein podoplanin. In addition, corneas were stained for the lymphangiogenic growth factor VEGF-C, and its receptor VEGFR3 by immunohistochemistry and in situ RNA hybridization, respectively. RESULTS: Thin-walled, erythrocyte-free vessels staining with lymphatic markers (LYVE-1 and podoplanin) were found to constitute 8% of all vessels, to be more common in the early course of neovascularization, to be always associated with blood vessels and stromal inflammatory cells, and to correlate significantly with the degree of corneal hemangiogenesis (r = 0.6; P = 0.005). VEGF-C, VEGFR3, podoplanin, and LYVE-1 colocalized on the endothelial lining of lymphatic vessels. With immunogold labeling, LYVE-1 and podoplanin antigen were found on endothelial cells lining vessels with ultrastructural features of lymph vessels. CONCLUSIONS: Immunohistochemistry with novel lymph-endothelium markers and ultrastructural analyses indicate the existence of lymphatic vessels in vascularized human corneas. Human corneal lymphangiogenesis appears to be correlated with the degree of corneal hemangiogenesis and may at least partially be mediated by VEGF-C and its receptor VEGFR3.  (+info)

Macrophage inflammatory protein-2 and vascular endothelial growth factor regulate corneal neovascularization induced by infection with Pseudomonas aeruginosa in mice. (34/340)

Pseudomonas aeruginosa ocular infection causes extensive corneal neovascularization. The purpose of the present study was to investigate the role of the angiogenic factors macrophage inflammatory protein-2 (MIP-2) and vascular endothelial growth factor (VEGF) in the regulation of corneal neovascularization during P. aeruginosa ocular infection. After administering anti-MIP-2 antibody or control antibody, mouse corneas were challenged with P. aeruginosa. The expression of MIP-2 and VEGF was detected using an ELISA from ocular homogenates. Corneal neovascularization was examined by histology. The cellular sources of MIP-2 and VEGF were identified by immunohistochemistry. In addition, protein expression of MIP-2 and VEGF in isolated corneas was measured to determine the ability of the cornea to produce these two mediators. Results showed that the expression of MIP-2 and VEGF was significantly (P < 0.05) elevated after bacterial infection, and high levels of these two mediators paralleled the extensive corneal neovascularization seen at later stages of the infection. Anti-MIP-2 antibody treatment resulted in a significant (P < 0.05) reduction in VEGF expression and in corneal neovascularization. Both corneal resident cells and infiltrating neutrophils had the ability to produce MIP-2 and VEGF after stimulation. The present study demonstrates that both MIP-2 and VEGF are important mediators in the regulation of corneal neovascularization caused by P. aeruginosa infection, and that MIP-2 regulates the production of VEGF.  (+info)

The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. (35/340)

In diabetes mellitus, there is a problem of both premature atherosclerosis as well as impaired collateralization. Studies were performed using the rat corneal angiogenesis model as a surrogate for collateralization to determine the effect of diabetes mellitus on endothelin (ET)-1, ET-3, vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8)-mediated angiogenesis. In an initial group of experiments, streptozotocin-induced diabetes resulted in impairment of ET-1-mediated angiogenesis from 69% to 32%, but was only impaired from 74% to 59% for ET-3. When rats were fluid-resuscitated, mortality fell, and the incidence of inhibition of angiogenesis decreased for ET-1, but was still at 47%. Inhibition of ET-3-mediated angiogenesis in fluid-resuscitated rats was essentially unaffected from 74% to 75%. Studies of VEGF and IL-8 in fluid-resuscitated rats demonstrated that VEGF-mediated angiogenesis was only inhibited from 49% to 45%, but there was inhibition of IL-8-mediated angiogenesis from 62% to 31%. We concluded that there may be two mechanisms by which ET-1-mediated corneal angiogenesis is inhibited: a decrease in intravascular volume and dynamic forces affecting angiogenesis, and a direct effect of diabetes on some aspect of cell growth or angiogenic process. Diabetes also appeared to inhibit IL-8-mediated angiogenesis, but had very little or no effect on ET-3- or VEGF-mediated angiogenesis.  (+info)

The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. (36/340)

PURPOSE: This study was designed to gain an insight into the inflammatory milieu into which a donor limbal graft is routinely introduced. The objective of this study was to modulate this environment by gene therapy with the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1 RA). METHODS: In a mouse model, the ocular surface cytokine environment associated with a conjunctivalized cornea was assessed 4 weeks after injury. Total corneal epithelial and limbal debridement was performed with a combination of alkali and scrape injury. The cytokines and adhesion molecules measured included IL-1alpha, IL-1beta, IL-6, VEGF, intercellular adhesion molecule (ICAM)-1, and vascular adhesion molecule (VCAM)-1, by real-time PCR or ELISA. Injured corneas were transfected with IL-1 RA by injection of naked plasmid vector pIRES-EGFP-IL-1 RA immediately after injury. Corneas transfected with pIRES-EGFP served as the control. Expression of corneal IL-1 RA after transfection with pIRES-EGFP-IL1-RA was assessed over a 2-week period by real-time PCR and Western blot analysis. In addition, limbal stem cell grafts transfected with IL-1 RA were assessed for leukocyte influx. RESULTS: Conjunctivalized corneas showed increased expression of IL-1alpha, IL-1beta, IL-1 RA, IL-6, VEGF, ICAM-1, and VCAM-1, compared with normal cornea. Transfection-efficiency experiments indicated that corneal expression of IL-1 RA peaked between 12 and 24 hours and lasted up to 2 weeks after the initial transfection. IL-1 RA corneal gene therapy resulted in a downregulation of IL-1beta and VCAM-1 expression at 4 weeks after injury, whereas downregulation of IL-6 was evident only at 1 week after injury. Corneal neovascularization was also reduced. In addition, corneal limbal stem cell grafts transfected with IL-1 RA showed a decreased leukocyte influx compared with control grafts. CONCLUSIONS: Transfection of a cornea with IL-1 RA immediately after epithelial injury selectively altered the cytokine profile of the resultant conjunctivalized cornea and suppressed corneal neovascularization. Transfection of corneal limbal donor tissue with IL-1 RA before engraftment can reduce leukocyte influx into the graft. The findings demonstrate the feasibility of using transient cytokine gene expression, either in donor or recipient corneal tissue, to alter the ocular surface environment beneficially.  (+info)

Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis. (37/340)

BACKGROUND: The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. METHODS: The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. RESULTS: GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. CONCLUSIONS: In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.  (+info)

Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. (38/340)

OBJECTIVE: To assess the capacities of the cytokine inhibitors interleukin-1 receptor antagonist (IL-1Ra; anakinra) and PEGylated soluble tumor necrosis factor receptor I (PEG sTNFRI; pegsunercept) to suppress neovascularization. METHODS: A corneal angiogenesis assay was performed by implanting nylon discs impregnated with an angiogenic stimulator (basic fibroblast growth factor or vascular endothelial growth factor) into one cornea of female Sprague-Dawley rats. Animals were treated with IL-1Ra or PEG sTNFRI for 7 days, after which new vessels were quantified. In a parallel study, male Lewis rats with mycobacteria-induced adjuvant-induced arthritis were treated with IL-1Ra or PEG sTNFRI for 7 days beginning at disease onset, after which scores for inflammation and bone erosion as well as capillary counts were acquired from sections of arthritic hind paws. RESULTS: Treatment with IL-1Ra yielded a dose-dependent reduction in growth factor-induced corneal angiogenesis, while PEG sTNFRI did not. IL-1Ra, but not PEG sTNFRI, significantly reduced the number of capillaries in arthritic paws, even though both anticytokines reduced inflammation and bone erosion to a similar degree. CONCLUSION: These data support a major role for IL-1, but not TNFalpha, in angiogenesis and suggest that an additional antiarthritic mechanism afforded by IL-1 inhibitors, but not anti-TNF agents, is the suppression of the angiogenic component of pannus.  (+info)

Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. (39/340)

BACKGROUND/AIM: During angiogenesis-that is, the outgrowth of new from pre-existing blood vessels, new capillaries undergo a period of "fine tuning" when vascular endothelial cells become apoptotic if sufficient supply of angiogenic factors is lacking. Morphologically, this period correlates with the absence of pericyte coverage of new vessels. Mature, pericyte covered vessels, in contrast, do not depend on elevated levels of angiogenic factors for survival. This study analyses whether, and if so when, pathological vessels in human corneal neovascularisation (CN) acquire pericyte coverage. This can be of importance for future angioregressive therapeutic strategies. METHODS: Vascularised human corneas obtained by keratoplasty were evaluated by electron microscopy for pericyte coverage of new vessels. These data were correlated with the duration of CN (mean 73 (SD 95) (range 0.5-360) months; n = 15). CN was secondary to keratitis, transplant rejection, aniridia, or trauma. RESULTS: Overall, 196 blood vessels were analysed ultrastructurally (72 (37%) capillaries, 122 (62%) venules, and two (1%) arterioles). Electron microscopically, 170 (87%) vessels were covered by pericytes and two (1%) in addition by smooth muscle cells. Pericyte recruitment increased with time, evolving between clinically noted onset of CN and keratoplasty. Already 2 weeks after onset of CN, more than 80% of new vessels were covered by pericytes. CONCLUSION: Pathological new vessels in human corneal angiogenesis are rapidly covered by pericytes. Therapeutic strategies aimed at regression of immature, not yet pericyte covered vessels by antagonising angiogenic factors should thus be most effective if applied very early in the course of corneal neovascularisation.  (+info)

Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. (40/340)

Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis.  (+info)