Metal-catalyzed oxidation of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: inactivation and destabilization by oxidation of active-site cysteines. (1/283)

The in vitro instability of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Phe)] from Escherichia coli has been found to be due to a metal-catalyzed oxidation mechanism. DAHPS(Phe) is one of three differentially feedback-regulated isoforms of the enzyme which catalyzes the first step of aromatic biosynthesis, the formation of DAHP from phosphoenolpyruvate and D-erythrose-4-phosphate. The activity of the apoenzyme decayed exponentially, with a half-life of about 1 day at room temperature, and the heterotetramer slowly dissociated to the monomeric state. The enzyme was stabilized by the presence of phosphoenolpyruvate or EDTA, indicating that in the absence of substrate, a trace metal(s) was the inactivating agent. Cu2+ and Fe2+, but none of the other divalent metals that activate the enzyme, greatly accelerated the rate of inactivation and subunit dissociation. Both anaerobiosis and the addition of catalase significantly reduced Cu2+-catalyzed inactivation. In the spontaneously inactivated enzyme, there was a net loss of two of the seven thiols per subunit; this value increased with increasing concentrations of added Cu2+. Dithiothreitol completely restored the enzymatic activity and the two lost thiols in the spontaneously inactivated enzyme but was only partially effective in reactivation of the Cu2+-inactivated enzyme. Mutant enzymes with conservative replacements at either of the two active-site cysteines, Cys61 or Cys328, were insensitive to the metal attack. Peptide mapping of the Cu2+-inactivated enzyme revealed a disulfide linkage between these two cysteine residues. All results indicate that DAHPS(Phe) is a metal-catalyzed oxidation system wherein bound substrate protects active-site residues from oxidative attack catalyzed by bound redox metal cofactor. A mechanism of inactivation of DAHPS is proposed that features a metal redox cycle that requires the sequential oxidation of its two active-site cysteines.  (+info)

Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. (2/283)

The Cu status of mature, crossbred ewes fed two sources (CuSO4 vs. Cu proteinate) and three levels (10, 20, or 30 mg/kg) of dietary Cu was determined in a 73-d feeding trial. Ewes (n = 30) were fed a basal diet containing rice meal feed, cottonseed hulls, cottonseed meal, meat and bone meal, cracked corn, and vitamin-mineral supplements at 2.5% of BW to meet NRC requirements for protein, energy, macrominerals, and microminerals, excluding Cu. The basal diet contained 5 mg/kg Cu, 113 mg/kg Fe, .1 mg/kg Mo, and .17% S. Copper sulfate or Cu proteinate was added to the basal diet to supply 10, 20, or 30 mg/kg of dietary copper in a 2x3 factorial arrangement of treatments. Ewes were housed in 3.7- x 9.1-m pens in an open-sided barn. Blood samples were collected on d 28 and 73. Ewes were slaughtered on d 74, and liver and other tissues were collected to determine Cu concentrations. An interaction (P = .08) occurred between source and level for liver Cu. The interaction existed due to an increase in liver Cu concentrations when ewes were fed increasing dietary Cu from CuSO4 but not when fed Cu proteinate diets. There was no source x level interaction (P>.10) for the blood constituents measured. On d 73, plasma ceruloplasmin activity was greater (P<.05) in ewes fed Cu proteinate than in those fed CuSO4 (33.1 vs. 26.8 microM x min(-1) x L(-1)). Increasing the concentration of dietary Cu did not affect (P>.10) plasma ceruloplasmin. Packed cell volume (PCV), red blood cell count (RBC), white blood cell count, whole blood hemoglobin (wHb), plasma hemoglobin, and plasma Cu were similar between sources of Cu. Ewes fed 20 mg/kg Cu had lower (P<.05) PCV, RBC, and wHb than those fed 10 or 30 mg/kg Cu diets. Feeding up to 30 mg/kg Cu from these sources did not cause an observable Cu toxicity during the 73-d period.  (+info)

Hemolytic activity of copper sulfate as influenced by epinephrine and chelating thiols. (3/283)

AIM: To study the effects of epinephrine, homocysteine, and other complexing agents on the cytotoxicity of copper sulfate. METHODS: In vitro suspensions of human red cells incubated with cupric sulfate were used, and hemolysis was determined by extracellular hemoglobin. RESULTS: The hemolytic activity of CuSO4 (0.3 mmol.L-1) was enhanced by the presence of epinephrine and to a lesser extent by homocysteine, whereas D-penicillamine, succimer, and mercaptodextran reduced the copper-induced hemolysis. The latter 3 chelating thiols also reduced the copper-epinephrine-induced hemolysis. The plasma protein ceruloplasmin reduced markedly the copper-epinephrine-induced hemolysis, even upon concentrations < 20% of that of copper. Chromic chloride, as well, acted anti-hemolytically. CONCLUSION: The latter protectors may interact with the production or activity of toxic oxygen, while classical copper chelators sequester cupric ions from interaction with epinephrine or homocysteine.  (+info)

Gastrointestinal motor and myoelectric correlates of motion sickness. (4/283)

The objectives of this study were to characterize the digestive tract motor and myoelectric responses associated with motion sickness. Twenty-two cats (1.5-3.0 kg) were chronically implanted with force transducers and electrodes on the stomach and small intestine. Motion sickness was activated by vertical oscillation (VO) at +/-0.5 g and identified as salivation, licking, or vomiting. Vomiting was initiated chemically by UK-14304 (2.5-15 microg/kg iv) or CuSO4 (10-50 mg ig). We found that VO caused vomiting (45% of trials), a decrease in gastrointestinal (GI) motility (69% of trials), salivation or licking (59% of trials), bradygastria (39% of trials), retrograde giant contraction (RGC, 43% of trials), giant migrating contraction (GMC, 5% of trials), and defecation (18% of trials). The decrease in GI motility occurred with (62% of trials) or without (69% of trials) vomiting. Motion sickness was accompanied by bradygastria (52% of trials) and decreased GI motility (70% of trials). Similar events occurred after CuSO4 and UK-14304, but the incidences of responses after CuSO4 were less frequent, except for vomiting, RGC, and GMC. UK-14304 never caused GMCs or defecation. The magnitude and velocity of the RGC were the same during all emetic stimuli, and RGCs never occurred without subsequent vomiting. Supradiaphragmatic vagotomy (n = 1) or atropine (n = 2, 10 or 50 microg/kg iv) blocked the RGC, but not vomiting, due to VO. We concluded that 1) oculovestibular stimulation causes digestive tract responses similar to other types of emetic stimuli, 2) decreased GI motility and bradygastria may be physiological correlates of the motion sickness, and 3) motion sickness may not be dependent on any specific GI motor or myoelectric response.  (+info)

A kinetic study of the oxidation effects of amphotericin B on human low-density lipoproteins. (5/283)

The UV-visible results of this kinetic study show that amphothericin B as Fungizone is a much stronger oxidant than CuSO(4), itself a powerful oxidant of low-density lipoprotein (LDL). Amphotericin B as AmBisome alone has no oxidizing effect on LDL while a mixture of both AmBisome and CuSO(4) induces an important potentialization of the LDL oxidation. These results allow us to believe that the high toxicity of amphotericin B is related to its capacity to modify and to weaken the structure of LDL. In addition, differential scanning calorimetry experiments show that the oxidative modifications of LDL by CuSO(4) or by amphotericin B proceed through different mechanisms.  (+info)

Oxidation-dependent effects of oxidized LDL: proliferation or cell death. (6/283)

Oxidized low-density lipoprotein (oxLDL) induces a wide range of cellular responses to produce atherosclerotic lesion, but key factors determining the response are not understood. In this study, purified LDL was oxidized with copper sulfate, and its physical properties and the related biological responses were investigated. The average hydrodynamic diameter of the lightly oxidized LDL was approximately 25 nm and its Rf value relative to nLDL on agarose gel was between 1.0 and 1.25. The diameter of the extensively oxidized LDL was over 30 nm, the Rf value was over 2.0. A 24 h-exposure of resting RAW264.7 macrophage cells to 100 microg/ml of the lightly oxidized LDL induced proliferation and macrophage activation whereas the extensively oxidized LDL induced cell death at the same concentration. In contrast, 200 microg/ml of oxLDL caused cell death regardless of oxidation degree. Short incubation (4-6 h) of the highly oxidized LDL (100 microg/ml) also resulted in cell proliferation. OxLDL-induced cell death showed mixed characteristics of apoptosis and/or necrosis depending on the strength and duration of the insult. These results suggest that cellular responses induced by oxLDL be dependent on the oxidation degree, the duration of exposure, and the concentration of oxLDL.  (+info)

Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. (7/283)

Although Candida glabrata has emerged in recent years as a major fungal pathogen, there have been no reports demonstrating that it undergoes either the bud-hypha transition or high-frequency phenotypic switching, two developmental programs believed to contribute to the pathogenic success of other Candida species. Here it is demonstrated that C. glabrata undergoes reversible, high-frequency phenotypic switching between a white (Wh), light brown (LB), and dark brown (DB) colony phenotype discriminated on an indicator agar containing 1 mM CuSO(4). Switching regulates the transcript level of the MT-II metallothionein gene(s) and a newly discovered gene for a hemolysin-like protein, HLP. The relative MT-II transcript levels in Wh, LB, and DB cells grown in the presence of CuSO(4) are 1:27:81, and the relative transcript levels of HLP are 1:20:35. The relative MT-II and HLP transcript levels in cells grown in the absence of CuSO(4) are 1:20:30 and 1:20:25, respectively. In contrast, switching has little or no effect on the transcript levels of the genes MT-I, AMT-I, TRPI, HIS3, EPAI, and PDHI. Switching of C. glabrata is not associated with microevolutionary changes identified by the DNA fingerprinting probe Cg6 and does not involve tandem amplification of the MT-IIa gene, which has been shown to occur in response to elevated levels of copper. Finally, switching between Wh, LB, and DB occurred in all four clinical isolates examined in this study. As in Candida albicans, switching in C. glabrata may provide colonizing populations with phenotypic plasticity for rapid responses to the changing physiology of the host, antibiotic treatment, and the immune response, through the differential regulation of genes involved in pathogenesis. More importantly, because C. glabrata is haploid, a mutational analysis of switching is now feasible.  (+info)

Nickel compounds are novel inhibitors of histone H4 acetylation. (8/283)

Environmental factors influence carcinogenesis by interfering with a variety of cellular targets. Carcinogenic nickel compounds, although generally inactive in most gene mutation assays, induce chromosomal damage in heterochromatic regions and cause silencing of reporter genes when they are located near telomere or heterochromatin in either yeast or mammalian cells. We studied the effects of nickel on the lysine acetylation status of the NH2-terminal region of histone H4. At nontoxic levels, nickel decreased the levels of histone H4 acetylation in vivo in both yeast and mammalian cells, affecting only lysine 12 in mammalian cells and all of the four lysine residues in yeast. In yeast, lysine 12 and 16 were more greatly affected than lysine 5 and 8. Interestingly, a histidine Ni2+ anchoring site is found at position 18 from the NH2-terminal tail of H4. Nickel was also found to inhibit the acetylation of H4 in vitro using purified recombinant histone acetyltransferase. To our knowledge, this is the first agent shown to decrease histone H4 acetylation at nontoxic levels.  (+info)