Adaptive changes in dynamic properties of human disparity-induced vergence. (33/314)

PURPOSE: Vergence eye movements undergo adaptive recalibration in response to a training stimulus in which the initial disparity is changed just after vergence begins (the double-step paradigm). In the present study the changes in the dynamic properties of convergence, speed and acceleration, were examined by using this double-step paradigm, before and after adaptation. METHODS: Four normal subjects participated. Three-dimensional visual stimuli were provided by a head-mounted display with two liquid crystal diode (LCD) panels. To induce adaptation, a double step of disparity was used: an initial step from distances of 2 to 1 m was followed by a second step to distances of 0.7 m ("increasing paradigm") or 1.4 m ("decreasing paradigm") after a constant period of 0.2 seconds. The dynamic properties of vergence were compared before and after 30 minutes of training with these paradigms. RESULTS: Peak velocity of convergence became significantly greater (increasing paradigm) or smaller (decreasing paradigm) after 30 minutes' training. Changes in the dynamic properties of convergence were also obvious in phase-plane (velocity versus position) and main sequence (peak velocity versus amplitude) plots. Further analysis revealed that adaptive increases in vergence velocity were accomplished by an increase in the duration of the acceleration period, whereas adaptive decreases were induced by a decrease in the maximum value of acceleration. CONCLUSIONS: The pattern of change in the dynamic characteristics of vergence after adaptation was similar to that of saccades and the initiation of pursuit eye movements, suggesting common neural mechanisms for adaptive changes in the open-loop control of eye movements.  (+info)

Three-dimensional binocular kinematics of torsional vestibular nystagmus during convergence on head-fixed targets in humans. (34/314)

When a human subject is oscillated about the nasooccipital axis and fixes upon targets along the horizontal head-fixed meridian, angular eye velocity includes a vertical component that increases with the horizontal eccentricity of the line-of-sight. This vertical eye movement component is necessary to prevent retinal slip. We asked whether fixation on a near head-fixed target during the same torsional vestibular stimulation would lead to differences of vertical eye movements between the right and the left eye, as the directions of the two lines-of-sight are not parallel during convergence. Healthy human subjects (n = 6) were oscillated (0.3 Hz, +/-30 degrees) about the nasooccipital axis on a three-dimensional motor-driven turntable. Binocular movements were recorded using the dual search coil technique. A head-fixed laser dot was presented 1.4 m (far head-fixed target) or 0.25 m (near head-fixed target) in front of the right eye. We found highly significant (P < 0.01) correlations (R binocular = 0.8, monocular = 0.59) between the convergence angle and the difference of the vertical eye velocity between the two eyes. The slope of the fitted linear regression between the two parameters (s = 0.45) was close to the theoretical slope necessary to prevent vertical retinal slippage (predicted s = 0.5). Covering the left eye did not significantly change the slope (s = 0.52). In addition, there was a marked gain reduction (approximately 35%) of the torsional vestibuloocular reflex (VOR) between viewing the far and the near targets, confirming earlier results by others. There was no difference in torsional gain reduction between the two eyes. Lenses of +3 dpt positioned in front of both eyes to decrease the amount of accommodation did not further change the gain of the torsional VOR. In conclusion, ocular convergence on a near head-fixed target during torsional vestibular stimulation leads to deviations in vertical angular velocity between the two eyes necessary to prevent vertical double vision. The vertical deviation velocity is mainly linked to the amount of convergence, since it also occurs during monocular viewing of the near head-fixed target. This suggests that convergence during vestibular stimulation automatically leads to an alignment of binocular rotation axes with the visual axes independent of retinal slip.  (+info)

Adaptive control of pursuit, vergence and eye torsion in humans: basic and clinical implications. (35/314)

Recent research from our laboratory has been directed at understanding the range of capabilities for adaptive control of eye movements in normal human subjects. For smooth pursuit, different motor responses to the same sensory stimulus (horizontal target motion) can be learned, stored and gated in or out, according to context (vertical eye position). The dynamic properties of the 'open-loop' portion of horizontal, disparity-driven vergence eye movements are under adaptive control. Eye torsion is also subject to adaptive control, including torsional 'phoria adaptation' and cross-coupling of torsion into the horizontal vestibulo-ocular reflex (VOR). Finally, lesions of the oculomotor vermis in monkeys produce disordered binocular ocular motor function: 'esodeviations' in the absence of disparity cues, and decreased adaptation of the horizontal phoria to a sustained disparity induced by wearing a horizontal prism in front of one eye.  (+info)

Plasticity of convergence-dependent variations of cyclovergence with vertical gaze. (36/314)

Binocular alignment of foveal images is facilitated by cross-couplings of vergence eye movements with distance and direction of gaze. These couplings reduce horizontal, vertical and cyclodisparities at the fovea without using feedback from retinal image disparity. Horizontal vergence is coupled with accommodation. Vertical vergence that aligns tertiary targets in asymmetric convergence is thought to be coupled with convergence and horizontal gaze. Cyclovergence aligns the horizontal retinal meridians during gaze elevation in symmetrical convergence and is coupled with convergence and vertical gaze. The latter vergence-dependent changes of cyclovergence have been described in terms of the orientation of Listing's plane and have been referred to as the binocular extension of Listing's law. Can these couplings be modified? Plasticity has been demonstrated previously for two of the three dimensions of vergence (horizontal and vertical). The current study demonstrates that convergence-dependent changes of the orientation of Listing's plane can be adapted to either exaggerate or to reduce the cyclovergence that normally facilitates alignment of the horizontal meridians of the retinas with one another during gaze elevation in symmetrical convergence. The adaptability of cyclovergence demonstrates a neural mechanism that, in conjunction with the passive forces determined by biomechanical properties of the orbit, could play an active role in implementing Listing's extended law and provide a means for calibrating binocular eye alignment in three dimensions.  (+info)

Organisation of signals involved in binocular perception and vergence control. (37/314)

A novel type of dynamic random-dot stereogram (DRS) was used to study vergence movements and depth detection in response to temporal modulations of interocular correlation. Each DRS consisted of the repeated presentation of a pair of correlated images alternated by the presentation of a pair of uncorrelated images. The intervals of high (T(c)) and low (T(u)) correlation varied from 14 to 224 ms in steps of 14 ms. Depth detection and vergence responses behaved very different from each other as functions of T(c) and T(u). The different behaviours suggest that depth and vergence most likely result from independent streams of disparity processing. It is speculated that magnocellular layers process disparities that drive vergence and that a parvocellular stream of disparity processing is involved in depth perception. This suggestion is discussed in relation to recent findings on binocularly perceived direction and depth. The discussion leads to suggesting a headcentric organisation of signals involved in binocular perception and a retinal organisation of signals involved in vergence control.  (+info)

Conjugate and vergence oscillations during saccades and gaze shifts: implications for integrated control of binocular movement. (38/314)

Saccades made between targets at optical infinity require both eyes to rotate by the same angle. Nevertheless, these saccades are consistently accompanied by transient vergence eye movements. Here we have investigated whether the dynamics of these vergence movements depend on the trajectory of the coincident conjugate movement, and whether moving the head during eye-head gaze shifts modifies vergence dynamics. In agreement with previous reports, saccades with more symmetric (i.e., "bell-shaped") conjugate velocity profiles were accompanied by stereotyped biphasic vergence transients (i.e., a divergence phase immediately followed by a convergence phase). However, we found that saccades with more asymmetric, oscillatory-like dynamics (characterized by a typical conjugate reacceleration of the eyes following the initial peak velocity) were systematically accompanied by more complex vergence movements that also exhibited oscillatory-like dynamics. These findings could be extended to conditions where the head was free to move: comparable conjugate and vergence oscillations were observed during head-restrained saccades and combined eye-head gaze shifts. The duration of the vergence oscillation increased with gaze shift amplitude, such that as many as four vergence phases (divergence-convergence-divergence-convergence) were recorded during 55 degrees gaze shifts (approximately 240 ms). To quantify these observations, we first determined whether conjugate and vergence peak velocities were systematically correlated. Conjugate peak velocity was linearly related to the peak velocity of the initial divergence phase for saccades and gaze shifts of all amplitudes, regardless of their dynamics. However, for more asymmetric saccades and gaze shifts, the subsequent convergence and divergence peak velocities were not correlated with either the initial peak conjugate velocity or the peak velocity of the conjugate reacceleration. Next, we determined that the duration of the different conjugate and vergence oscillation phases remained relatively constant across all saccades and gaze shifts, and that the conjugate and vergence profiles oscillated together at approximately 7.5-10 Hz. Using computer simulations, we show that a classic feed-forward model is unable to reproduce vergence oscillations based solely on peripheral mechanisms. Furthermore, we demonstrate that small modifications to the gain and delay of a simple feedback model for saccade generation can generate conjugate oscillations, and propose that such changes reflect the influence of lowered alertness on the tecto-reticular pathways. We conclude that peripheral mechanisms can only account for the initial divergence that accompanies all saccades, and that the conjugate and vergence oscillations observed during asymmetric movements arise centrally from an integrative binocular controller.  (+info)

Changes in Listing's plane after sustained vertical fusion. (39/314)

PURPOSE: To determine whether prolonged fusion of an imposed vertical disparity leads to a change in the orientation of Listing's plane, even when measured during monocular viewing. METHODS: Four normal subjects (age range, 24-37 years) wore Fresnel prisms of increasing power for 72 hours to produce a final left-over-right disparity (range, 7-11 prism diopters [approximately 3.9 - 6.2 degrees]) that was still fusible. Eye movements were measured binocularly, using three-axis search coils, as subjects fixed on an array of light-emitting diodes (LEDs) arranged on a flat screen, 124 cm away. A regression was used to fit the data points to a plane (Listing's plane) during monocular and binocular viewing. From each planar fit, the horizontal and vertical components of primary position (the direction of gaze that is perpendicular to Listing's plane) were calculated. Baseline data were collected in the unadapted state, either just before or at least 4 days after wearing the prisms. RESULTS: After the period of viewing through the prisms, there was a change in vertical phoria (prism adaptation) ranging from 1.6 to 3.3. There was a significant (P < 0.01) shift of the relative orientation of the vertical component of primary position between the two eyes of 6.3 +/- 1.7 degrees (right eye value minus left eye, up being positive, each measured during monocular viewing). There was no consistent pattern of change in the horizontal component of primary position. CONCLUSIONS: Prolonged fusion of a vertical disparity is associated with a change in the orientation of Listing's plane that persists under monocular viewing. Possible mechanisms include phoria adaptation, the prolonged fusional effort itself, and the residual disparity that must be overcome by sensory mechanisms.  (+info)

Missing lateral rectus force and absence of medial rectus co-contraction in ocular convergence. (40/314)

For a given position of the eye in the orbit, most abducens motoneurons (LRMNs) fire at higher rates in converged gaze than when convergence is relaxed, implying that lateral rectus (LR) muscle force will be higher for a given eye position in convergence. If medial rectus (MR) muscle force balances LR force, it too would be higher in convergence, that is, LRMN recording studies predict horizontal rectus co-contraction in convergence. Three trained rhesus monkeys with binocular eye coils and custom muscle force transducers (MFTs) on LR and MR of one eye alternately fixated near (approximately 7 cm) and far (200 cm) targets with vergence movements of 20-30 degrees. Tonic muscle forces were also measured during conjugate fixation of far targets over a 30 x 30 degrees field. MFT characteristics and effects on oculomotility were assessed. Contrary to predictions, we found small (<1 g) decreases in both LR and MR forces in convergence, for those gaze positions that were used in the brain stem recording studies. This missing LR force paradox (higher LRMN firing rates in convergence but lower LR forces) suggests that motoneurons or muscle fibers contribute differently to oculorotary forces in converged and unconverged states, violating the final common path hypothesis. The absence of MR co-contraction is consistent with, and supports, the missing LR force finding. Resolution of the missing LR force paradox might involve nonlinear interactions among muscle fibers, mechanical specialization of muscle fibers and other articulations of the peripheral oculomotor apparatus, or extranuclear contributions to muscle innervation.  (+info)