Solutions to health care waste: life-cycle thinking and "green" purchasing. (41/2885)

Health care waste treatment is linked to bioaccumulative toxic substances, such as mercury and dioxins, which suggests the need for a new approach to product selection. To address environmental issues proactively, all stages of the product life cycle should be considered during material selection. The purchasing mechanism is a promising channel for action that can be used to promote the use of environmentally preferable products in the health care industry; health care facilities can improve environmental performance and still decrease costs. Tools that focus on environmentally preferable purchasing are now emerging for the health care industry. These tools can help hospitals select products that create the least amount of environmental pollution. Environmental performance should be incorporated into the evolving definition of quality for health care.  (+info)

Natural and human impacts on invertebrate communities in Brazilian caves. (42/2885)

Species richness, abundance, distribution and similarity between cave invertebrate communities were compared among seven caves located in the Peruacu River valley, north of Minas Gerais State, Brazil. Such comparisons aimed to determinate the degree of biological complexity in the sampled caves, calculated by the "Index of Biological Complexity in Caves", presented in this manuscript. The presence of potential or real impacts on the cave fauna was also investigated. A total of 1,468 individuals belonging to 57 families of: Acarina, Pseudoscorpionida, Araneida, Opilionida, Amblypygi, Isopoda, Geophilomorpha, Scutigeromorpha, Spirostreptida, Coleoptera, Collembola, Diptera, Dictyoptera, Ephemeroptera, Ensifera, Heteroptera, Hymenoptera, Lepidoptera, Plecoptera, Psocoptera, and Trichoptera was collected. Caves with higher resource availability (as those hidrologicaly actives) had a higher biological complexity than those with less resource. There are two types of impacts that occur in the area: the natural (geological) and the anthropic, as intense "stepping" and visitation or use of cave entrances as cattle shelters. There are caves with different preservation degrees in the area, with invertebrate communities in varied complexity states. The communities of these caves undoubtedly deserve care, since the area is extremely important in the Brazilian biospeleological context.  (+info)

Regional-scale assembly rules and biodiversity of coral reefs. (43/2885)

Tropical reef fishes and corals exhibit highly predictable patterns of taxonomic composition across the Indian and Pacific Oceans. Despite steep longitudinal and latitudinal gradients in total species richness, the composition of these key taxa is constrained within a remarkably narrow range of values. Regional-scale variation in reef biodiversity is best explained by large-scale patterns in the availability of shallow-water habitat. Once habitat area is accounted for, there is surprisingly little residual effect of latitude or longitude. Low-diversity regions are most vulnerable to human impacts such as global warming, underscoring the urgent need for integrated management at multinational scales.  (+info)

Can cloning save endangered species? (44/2885)

Efforts to clone some rare, endangered and even extinct species have created controversy amongst conservation bodies who think resources could be much better directed. Kenneth Lee reports.  (+info)

Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. (45/2885)

Scale is widely recognized as a fundamental conceptual problem in biology, but the question of whether species-richness patterns vary with scale is often ignored in macro-ecological analyses, despite the increasing application of such data in international conservation programmes. We tested for scaling effects in species-richness gradients with spatially scaled data for 241 species of South American hummingbirds (Trochilidae). Analyses revealed that scale matters above and beyond the effect of quadrat area. Species richness was positively correlated with latitude and topographical relief at ten different spatial scales spanning two orders of magnitude (ca. 12,300 to ca. 1,225,000 km2). Surprisingly, when the influence of topography was removed, the conditional variation in species richness explained by latitude fell precipitously to insignificance at coarser spatial scales. The perception of macro-ecological pattern thus depends directly upon the scale of analysis. Although our results suggest there is no single correct scale for macro-ecological analyses, the averaging effect of quadrat sampling at coarser geographical scales obscures the fine structure of species-richness gradients and localized richness peaks, decreasing the power of statistical tests to discriminate the causal agents of regional richness gradients. Ideally, the scale of analysis should be varied systematically to provide the optimal resolution of macro-ecological pattern.  (+info)

Consistent land- and atmosphere-based U.S. carbon sink estimates. (46/2885)

For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.  (+info)

Changes in forest biomass carbon storage in China between 1949 and 1998. (47/2885)

The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.  (+info)

Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources. (48/2885)

A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.  (+info)